工程力学 ›› 2019, Vol. 36 ›› Issue (4): 196-205.doi: 10.6052/j.issn.1000-4750.2018.03.0125

• 土木工程学科 • 上一篇    下一篇

基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法

朱志辉1,2, 张磊1, 龚威1, 罗思慧1, 姚京川3, 余志武1   

  1. 1. 中南大学土木工程学院, 湖南, 长沙 410075;
    2. 中南大学重载铁路工程结构教育部重点实验室, 湖南, 长沙 410075;
    3. 中国铁道科学研究院铁道建筑研究所, 北京 100081
  • 收稿日期:2018-03-07 修回日期:2018-08-09 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 朱志辉(1979-),男,河南人,教授,博士,博导,主要从事车-桥耦合振动研究(E-mail:zzhh0703@163.com). E-mail:zzhh0703@163.com
  • 作者简介:张磊(1994-),男,河南人,硕士生,主要从事车-桥耦合振动研究(E-mail:sszhanglei@126.com);龚威(1992-),男,湖南人,博士生,主要从事车-桥耦合振动研究(E-mail:782508824@qq.com);罗思慧(1995-),女,湖南人,硕士生,主要从事车-桥耦合振动研究(E-mail:371024139@qq.com);姚京川(1977-),男,吉林人,副研究员,博士,主要从事桥梁工程、建筑基础科学研究(E-mail:yjcwxj@126.com);余志武(1955-),男,湖南人,教授,硕士,博导,从事结构工程、桥梁工程和防灾工程的研究(E-mail:zhwyu@mail.csu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51678576,51378511);国家重点研发计划项目(2017YFB1201204);牵引动力国家重点实验室开放课题项目(TPL1601)

AN EFFICIENT HYBRID METHOD FOR DYNAMIC ANALYSIS OF TRAIN-TRACK-BRIDGE COUPLED SYSTEMS BASED ON THE MODAL SUPERPOSITION METHOD AND DIRECT STIFFNESS METHOD

ZHU Zhi-hui1,2, ZHANG Lei1, GONG Wei1, LUO Si-hui1, YAO Jing-chuan3, YU Zhi-wu1   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hu'nan 410075, China;
    2. Key Laboratory of Engineering Structure of Heavy Haul Railway(Central South University), Ministry of Education, Changsha, Hu'nan 410075, China;
    3. Railway Engineering Research Institute, China Academy of Railway Sciences, Beijing 100081, China
  • Received:2018-03-07 Revised:2018-08-09 Online:2019-04-25 Published:2019-04-15

摘要: 为提高列车-轨道-桥梁耦合系统(Train-Track-Bridge Coupled System,TTBS)动力分析的计算效率,该文基于作者之前提出的TTBS动力分析混合模型,结合模态叠加法和直接刚度法,提出了一种改进的混合方法(Improved Hybrid Method,IHM)。该方法中,列车动力方程通过多刚体动力学方法建立;轨道结构动力方程通过直接刚度法建立以准确求解其高频局部振动响应,桥梁结构动力方程通过模态叠加法建立以降低其自由度数目。列车和轨道结构通过轮轨线性Hertzian接触关系耦合为列车-轨道耦合时变子系统,轨道与桥梁间通过轨-桥相互作用力的平衡迭代实现耦合。首先以朔黄重载铁路32 m简支梁桥现场试验数据验证了该文方法的正确性。然后,以CRH2型高速动车组通过万宁系杆拱桥为例,探究了桥梁振型数量对动力响应指标计算精度的影响规律,最后,对比三种不同的列车-轨道-桥梁耦合系统动力分析方法的计算结果及耗时,结果表明:同样的计算精度下,该文方法具有更高的计算效率。

关键词: 桥梁工程, 列车-轨道-桥梁耦合系统, 动力响应, 混合模型, 直接刚度法, 模态叠加法, 计算效率

Abstract: To improve the computational efficiency for analyzing the vibration of train-track-bridge coupled systems (TTBSs), an improved hybrid method (IHM) is proposed by combining the direct stiffness method (DSM) and the modal superposition method (MSM) based on the hybrid method. The vibration equations of the train are established by applying multi-body dynamics. The vibration equations of the track are established by using the DSM, which can effectively display the local dynamic behavior with high frequency. The vibration equations of the bridge are established by using the MSM, a method that can efficiently reduce the degrees of freedom. The train and track are coupled as a train-track subsystem through the linear wheel-rail Hertz contact model. The train-track subsystem and the bridge subsystem are coupled by enforcing the compatibility of forces at the contact points between the track and the bridge. The proposed method is validated by the field measurement data collected from a 32 m simply supported girder bridge on the Shuo-Huang heavy-haul railway line. A numerical example of a CRH2 high speed train passing the Wan-Ning Bridge is provided to investigate the effects of the number of bridge modes on the accuracy of the dynamic responses. The computation time of the three different methods for analyzing the vibration of the TTBS is compared and the results show that the IHM has the most computational efficiency than the other two methods.

Key words: bridge engineering, train-track-bridge coupled system, dynamic response, hybrid model, direct stiffness method, modal superposition method, computational efficiency

中图分类号: 

  • U441.3
[1] Xia H, Zhang N. Dynamic analysis of railway bridge under high-speed trains[J]. Computers & Structures, 2005, 83(23/24):1891-1901.
[2] Li H, Xia H, Soliman M, et al. Bridge stress calculation based on the dynamic response of coupled train-bridge system[J]. Engineering Structures, 2015, 99(5):334-345.
[3] 朱志辉, 杨乐, 王力东, 等. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4):78-87. Zhu Zhihui, Yang Le, Wang Lidong, et al. Dynamic responses and train running safety of railway cable-stayed bridge earthquakes[J]. Engineering Mechanics, 2017, 34(4):78-87. (in Chinese)
[4] Zhai W, Xia H, Cai C, et al. High-speed train-trackbridge dynamic interactions-Part I:theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1(1/2):3-24.
[5] 李奇, 程石利, 励吾千, 等. 车轨桥中高频耦合振动分析的功率流方法及模型[J]. 工程力学, 2016, 33(12):112-118. Li Qi, Cheng Shili, Li Wuqian, et al. A power flow method and its modeling for coupling vibration analysis of train-track-bridge system in the medium-to-high frequency range[J]. Engineering Mechanics, 2016, 33(12):112-118. (in Chinese)
[6] Dimitrakopoulos E G, Zeng Q. A three-dimensional dynamic analysis scheme for the interaction between trains and curved railway bridges[J]. Computers & Structures, 2015, 149(2015):43-60.
[7] Kargarnovin M H, Younesian D, Thompson D, et al. Ride comfort of high-speed trains travelling over railway bridges[J]. Vehicle System Dynamics, 2006, 43(3):173-197.
[8] Yang S C, Hwang S H. Train-track-bridge interaction by coupling direct stiffness method and mode superposition method[J]. Journal of Bridge Engineering, 2016, 21(10):04016058.
[9] Olmos J M, Astiz M A. Analysis of the lateral dynamic response of high pier viaducts under high-speed train travel[J]. Engineering Structures, 2013, 56(6):1384-1401.
[10] 朱志辉, 龚威, 王力东, 等. 列车-轨道-桥梁耦合系统动力方程求解方法对计算精度和效率的影响[J]. 中国铁道科学, 2016, 37(5):17-26. Zhu Zhihui, Gong Wei, Wang Lidong, et al. Influence of solution method for dynamics equation of train-track-bridge coupled system on calculation precision and efficiency[J]. China Railway Science, 2016, 37(5):17-26. (in Chinese)
[11] 王少钦, 马骎, 夏禾, 等. 风-列车-大跨度悬索桥系统非线性耦合振动分析[J]. 工程力学, 2016, 33(12):150-157. Wang Shaoqing, Ma Qing, Xia He, et al. Nonlinear dynamic analysis of a wind-train-long-span suspension bridge coupling system[J]. Engineering Mechanics, 2016, 33(12):150-157. (in Chinese)
[12] 朱志辉, 王小飞, 吕连兵, 等. 卸索期间列车-斜拉桥耦合动力响应分析[J]. 中国铁道科学, 2015, 36(5):19-27. Zhu Zhihui, Wang Xiaofei, Lü Lianbin, et al. Coupling dynamic response of train and cable-stayed bridge during cable removal[J]. China Railway Science, 2015, 36(5):19-27. (in Chinese)
[13] Ke C, Song X Y. Computationally efficient down-hole drilling system dynamics modeling integrating finite element and transfer matrix[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 2017, 139(12):121003-1-121003-8.
[14] Horas C S, Alencar G, Jesus A M P D, et al. Development of an efficient approach for fatigue crack initiation and propagation analysis of bridge critical details using the modal superposition technique[J]. Engineering Failure Analysis, 2018, 89(9):118-137.
[15] Guo W W, Xia H, Roeck G D, et al. Integral model for train-track-bridge interaction on the Sesia viaduct:Dynamic simulation and critical assessment[J]. Computers & Structures, 2012, 112(1):205-216.
[16] Xu Y L, Li Q, Wu D J, et al. Stress and acceleration analysis of coupled vehicle and long-span bridge systems using the mode superposition method[J]. Engineering Structures, 2010, 32(5):1356-1368.
[17] Guo W H, Xu Y L. Fully computerized approach to study cable-stayed bridge-vehicle interaction[J]. Journal of Sound & Vibration, 2001, 248(4):745-761.
[18] Biondi B, Muscolino G, Sofi A. A substructure approach for the dynamic analysis of train-track-bridge system[J]. City:Pergamon Press, Inc., 2005, 83(28/29/30):2271-2281.
[19] Zhu Z, Gong W, Wang L, et al. A hybrid solution for studying vibrations of coupled train-track-bridge system[J]. Advances in Structural Engineering, 2017, 20(11):1699-1711.
[20] 朱志辉, 龚威, 张磊. 等. 基于分离迭代和耦合时变的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 中国铁道科学, 2018, 39(1):66-74. Zhu Zhihui, Gong Wei, Zhang Lei, et al. An efficient hybrid algorithm for dynamic analysis of train-track-bridge coupled system based on separation iterative method and coupled time-varying method[J]. China Railway Science, 2018, 39(1):66-74. (in Chinese)
[21] 张攀, 周昌盛, 王平. 轨下垫板刚度的时变特性及其影响研究[J]. 铁道标准设计, 2015, 59(9):49-52. Zhang Pan, Zhou Changsheng, Wang Ping. Study on Time Variant Characteristics and Effects of Rail Pad Stiffness[J]. Railway Standard Design, 2015, 59(9):49-52. (in Chinese)
[22] Fryba L. Vibration of solids and structures under moving loads[M]. Groningen, The Netherlands:Noordhoff International, 1972.
[23] Steele C R. The finite beam with a moving load[J]. Journal of Applied Mechanics, 1967, 34(1):111-118.
[24] Wiriyachai A, Chu K H, Garg V K. Bridge impact due to wheel and track irregularities[J]. Journal of the Engineering Mechanics Division, 1982, 108(4):648-666.
[25] Clark R A. An investigation into the dynamic effects of railway vehicle running on corrugated rail[J]. Journal of Mechanical Engineering Science, 1982, 24(2):65-76.
[26] Ling L, Han J, Xiao X, et al. Dynamic behavior of an embedded rail track coupled with a tram vehicle[J]. Journal of Vibration & Control, 2015, 23(14):2355-2372.
[27] Zhang N, Xia H, Guo W W, et al. A vehicle-bridge linear interaction model and its validation[J]. International Journal of Structural Stability & Dynamics, 2010, 10(2):335-361.
[28] Li Y L, Yang S, Xia F L, et al. Vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges[J]. Science China Technological Sciences, 2015, 58(2):236-247.
[29] Liu K, Reynders E, Roeck G D, et al. Experimental and numerical analysis of a composite bridge for high-speed trains[J]. Journal of Sound & Vibration, 2009, 320(1/2):201-220.
[30] Zhu Z, Wang L, Yu Z, et al. Non-stationary random vibration analysis of railway bridges under moving heavy-haul trains[J]. International Journal of Structural Stability & Dynamics, 2018, (5):1850035.
[31] 刘玮, 曲村. 高速铁路桥上有砟轨道轨枕选型方案研究[J]. 高速铁路技术, 2011, 2(3):38-42. Liu Wei, Qu Cun. Study on selection of sleepers for ballasted track on bridges of high-speed railway[J]. High Speed Railway Technology, 2011, 2(3):38-42. (in Chinese)
[32] 李星新, 田启贤, 郑平伟, 等. 大跨度高速铁路桥梁测试与分析中的技术问题[J]. 桥梁建设, 2009(增刊2):89-92. Li Xingxin, Tian Qixian, Zheng Weiping, et al. Technical issues in testing and analysis of long span high-speed railway bridges[J]. Bridge Construction, 2009(Suppl 2):89-92. (in Chinese)
[1] 郑文智, 王浩, 沈惠军. 强震下隔震连续梁桥地震响应的温度效应研究[J]. 工程力学, 2019, 36(4): 188-195,205.
[2] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[3] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[4] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[5] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[6] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[7] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18-23.
[8] 宋帅, 钱永久, 钱聪. 桥梁地震需求中随机参数的重要性分析方法研究[J]. 工程力学, 2018, 35(3): 106-114.
[9] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[10] 李焱, 唐友刚, 朱强, 曲晓奇, 刘利琴. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
[11] 叶新一, 王草, 李全旺. 桥梁结构时变可靠度计算的新方法[J]. 工程力学, 2018, 35(11): 86-91.
[12] 黄林杰, 周臻. 带填充墙自复位预应力混凝土框架结构的抗震性能分析[J]. 工程力学, 2018, 35(10): 162-171.
[13] 耿少波, 刘亚玲, 薛建英. 钢箱梁缩尺模型爆炸冲击波作用下破坏实验研究[J]. 工程力学, 2017, 34(增刊): 84-88.
[14] 赵春风, 陈健云, 王静峰. AP1000核电厂房动力特性参数化分析与优化[J]. 工程力学, 2017, 34(增刊): 282-288.
[15] 董旭, 邓振全, 李树忱, 谷守法, 张峰. 大跨波形钢腹板箱梁桥日照温度场及温差效应研究[J]. 工程力学, 2017, 34(9): 230-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日