工程力学 ›› 2019, Vol. 36 ›› Issue (4): 248-256.doi: 10.6052/j.issn.1000-4750.2018.03.0119

• 其他工程学科 • 上一篇    

基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计

汪超1,2, 谢能刚1, 黄璐璐1   

  1. 1. 安徽工业大学机械工程学院, 安徽, 马鞍山 243002;
    2. 河海大学力学与材料学院, 江苏, 南京 210098
  • 收稿日期:2018-03-05 修回日期:2018-09-13 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 谢能刚(1971-),男,安徽当涂人,教授,博士,主要从事现代设计方法和高性能算法研究(E-mail:xieng@ahut.edu.cn). E-mail:xieng@ahut.edu.cn
  • 作者简介:汪超(1986-),男,安徽合肥人,讲师,博士生,主要从事等几何分析和结构优化设计研究(E-mail:cw2013@ahut.edu.cn);黄璐璐(1992-),男,安徽六安人,硕士生,主要从事等几何分析研究(E-mail:luluhuangedu@aliyun.com).
  • 基金资助:
    国家自然科学基金项目(61375068);安徽省科技攻关面上项目(1704a0902008)

DESIGN AND SHAPE OPTIMIZATION OF HOLED STRUCTURE BY EXTENDED ISOGEOMETRIC ANALYSIS AND CHAOTIC ION MOTION OPTIMIZATION

WANG Chao1,2, XIE Neng-gang1, HUANG Lu-lu1   

  1. 1. College of Mechanical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, China;
    2. College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2018-03-05 Revised:2018-09-13 Online:2019-04-25 Published:2019-04-15

摘要: 为了解决带孔结构形状优化问题,提出了一种将扩展等几何分析方法和混沌离子运动算法相结合的优化求解模式。针对带孔结构的力学计算,采用扩展等几何分析方法,以几何体外轮廓划分背景网格,利用非均匀有理B样条描述带孔边界,其中在劲度矩阵组装过程中,孔内区域不做积分。另外,为获得高精度的积分计算,与孔边界相关的单元采用自适应四叉树细化规则。在优化模型中,以描述结构形状的控制点作为设计变量,以结构质量最小作为优化目标;利用离子运动优化算法代替传统的敏感性移动渐进法对优化模型进行求解。带孔无限平板算例的扩展等几何分析计算结果和转矩臂结构优化算例的计算结果证明了本文方法的有效性。

关键词: 扩展等几何分析, 自适应四叉树, 形状优化, 带孔结构, 混沌离子运动算法

Abstract: To solve the problem of the shape optimization of holed structure, a method that integrates extended isogeometric analysis and a chaotic ion motion algorithm is proposed. For mechanical calculations of holed structure, extended isogeometric analysis is used to divide the background meshes in geometric shape, and to describe the boundary of the holes with non-uniform rational B-splines where there is no integral in the area of the holes in the assembly of the stiffness matrix. In addition, to obtain high precision integral calculations, refinement by the adaptive four-forked tree is performed in the element related to the hole boundary. In the optimization model, the control points for describing the structure are set to be the design variables, and the optimization objective is to minimize the mass of the structure. The optimization model is then solved by using the ion motion optimization algorithm instead of the traditional asymptotic method based on sensitivity analysis. The calculation results of the infinite plate with a circular hole by extended isogeometric analysis and the optimization result of a torque arm structure proved the validity of this method.

Key words: extended isogeometric analysis, adaptive four-forked tree, shape optimization, holed structure, chaotic ion motion algorithm

中图分类号: 

  • TH122
[1] Wall W, Frenzel M A, Cyron C. Isogeometric structural shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(30-40):2976-2988.
[2] Sun S H, Yu T T, Nguyen T T, et al. Structural shape optimization by IGABEM and particle swarm optimization algorithm[J]. Engineering Analysis with Boundary Elements, 2018, 88:26-40.
[3] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620.
[4] Asareh I, Yoon Y C, Song J H. A numerical method for dynamic fracture using the extended finite element method with non-nodal enrichment parameters[J]. International Journal of Impact Engineering, 2018, 121:63-76.
[5] Sukumar N, Chopp D L, Moës N, et al. Modeling holes and inclusions by level sets in the extended finite-element method[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46/47):6183-6200.
[6] Duysinx P, Miegroet L V, Jacobs T, et al. Generalized shape optimization using X-FEM and level set methods[C]//IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Dordrecht:Springer, 2006:23-32.
[7] Miegroet L V, Jacobs T, Duysinx P. Recent developments in fixed mesh optimization with XFEM and level set description[J]. Journal of Physics C:Solid State Physics, 2007, 12(7):1239-1244.
[8] Miegroet L V, Duysinx P. Stress concentration minimization of 2D Filets using X-FEM and level set description[J]. Structural and Multidisciplinary Optimization, 2007, 33(4/5):425-438.
[9] Wei P, Wang M Y, Xing X H. A study on X-FEM in continuum structural optimization using level set model[J]. Computer Aided Design, 2010, 42(8):708-719.
[10] Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39/41):4135-4195.
[11] 薛冰寒, 林皋, 胡志强, 等. 求解摩擦接触问题的IGA-B可微方程组方法[J]. 工程力学, 2016, 33(10):35-43. Xue Binghan, Lin Gao, Hu Zhiqiang, et al. Analysis of frictional contact mechanics problems by IGA-B differential equation method[J]. Engineering Mechanics, 2016, 33(10):35-43. (in Chinese)
[12] Lieu Q X, Lee J, Lee D, et al. Shape and size optimization of functionally graded sandwich plates using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm[J]. Thin-Walled Structures, 2018, 124:588-604.
[13] Benson D J, Bazilevs Y, Luycker D E, et al. A generalized finite element formulation for arbitrary basis functions:From isogeometric analysis to XFEM[J]. International Journal for Numerical Methods in Engineering, 2010, 83(6):765-785.
[14] Haasemann G, Kastner M, Pruger S, et al. Development of a quadratic finite element formulation based on the XFEM and NURBS[J]. International Journal for Numerical Methods in Engineering, 2011, 86(4/5):598-617.
[15] Luycker D E, Benson D J, Belytschko T, et al. X-FEM in isogeometric analysis for linear fracture mechanics[J]. International Journal for Numerical Methods in Engineering, 2011, 87(6):541-565.
[16] Ghorashi S S, Valizadeh N, Mohammadi S. Extended isogeometric analysis for simulation of stationary and propagating cracks[J]. International Journal for Numerical Methods in Engineering, 2011, 89(9):1069-1101.
[17] Svanberg K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
[18] Kennedy J, Eberhart R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, Piscataway:IEEE Press, 1995, 4:1942-1948.
[19] 颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4):69-77. Yan Xintong, Xu Longhe. Multi-objective optimization of genetic algorithm-based failure mode for reinforced concrete frame-shear wall structures[J]. Engineering Mechanics, 2018, 35(4):69-77. (in Chinese)
[20] Dorigo M, Maniezzo V, Colorni A. The ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1):29-41.
[21] Schnetzler B. Optimization by simulated annealing[J]. Science, 1992, 220(4598):671-680.
[22] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1):108-132.
[23] Krishnanand K N, Ghose D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions[J]. Swarm Intelligence, 2009, 3(2):87-124.
[24] Yang X S. Firefly algorithms for multimodal optimization[J]. International Conference on Stochastic Algorithms:Foundations and Applications, 2009, 5792:169-178.
[25] Yang X S, Cui Z, Xiao R, et al. Swarm intelligence and bio-inspired computation[M]. Netherlands:Elsevier, 2013:3-23.
[26] Javidy B, Hatamlou A, Mirjalili S. Ions motion algorithm for solving optimization problems[J]. Applied Soft Computing, 2015, 32(3):72-79.
[27] 过斌, 葛建立, 杨国来, 等. 三维实体结构NURBS等几何分析[J]. 工程力学, 2015, 32(9):42-48. Guo Bin, Ge Jianli, Yang Guolai, et al. NURBS-based isogeometric analysis of three-dimensional solid structures[J]. Engineering Mechanics, 2015, 32(9):42-48. (in Chinese)
[28] Gu J M, Yu T T, Lich L V, et al. Multi-inclusions modeling by adaptive XIGA based on LR B-splines and multiple level sets[J]. Finite Elements in Analysis and Design, 2018, 148(1):48-66.
[29] Cai S Y, Zhang W H, Zhu J H, et al. Stress constrained shape and topology optimization with fixed mesh:A B-spline finite cell method combined with level set function[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278(7):361-387.
[30] Alatas B, Akin E, Ozer A B. Chaos embedded particle swarm optimization algorithm[J]. Chaos Solitons and Fractals, 2009, 40(4):1715-1734.
[31] Xiang T, Liao X, Wong K W. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map[J]. Applied Mathematics and Computation, 2007, 190(2):1637-1645.
[32] Coelho L D S, Mariani V C. A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch[J]. Chaos Solitons and Fractals, 2009, 39(2):510-518.
[33] Zaslavskii G M. The simplest case of a strange attractor[J]. Physics Letters A, 1978, 69(3):145-147.
[34] Bennett J, Botkin M. Structural shape optimization with geometric description and adaptive mesh refinement[J]. AIAA Journal, 1985, 23(3):458-464.
[35] 蔡守宇, 张卫红, 李杨. 基于面片删减的带孔结构等几何形状优化方法[J]. 机械工程学报, 2013, 49(13):150-157. Cai Shouyu, Zhang Weihong, Li Yang. Isogeometric shape optimization method with patch removal for holed structures[J]. Journal of Mechanical Engineering, 2013, 49(13):150-157. (in Chinese)
[1] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[2] 胡兴国,程赫明. 周期性扩大框架的渐进结构优化方法研究[J]. 工程力学, 2013, 30(2): 24-29.
[3] 郭丽华;汤文成;袁 满. 基于并行混沌和复合形法的桁架结构形状优化[J]. 工程力学, 2011, 28(4): 151-157.
[4] 申秀丽;齐晓东;王荣桥;胡殿印;刘海. 航空发动机枞树形榫头/榫槽结构形状优化[J]. 工程力学, 2011, 28(12): 231-237.
[5] 隋允康;张 政;杜家政. 框架结构的截面和形状两级优化[J]. 工程力学, 2009, 26(8): 116-122.
[6] 邱爱红;龚曙光;黄云清;聂松辉. 基于虚载荷变量的无网格法形状优化的研究[J]. 工程力学, 2007, 24(9): 0-030,.
[7] 王 栋;李 晶. 空间桁架结构动力学形状优化设计[J]. 工程力学, 2007, 24(4): 0-134.
[8] 刘毅;金峰. 叠层复合材料方板多孔形状优化[J]. 工程力学, 2006, 23(5): 113-118.
[9] 隋允康;李善坡. 改进的响应面方法在二维连续体形状优化中的应用[J]. 工程力学, 2006, 23(10): 1-6.
[10] 李芳;凌道盛;徐兴. 一种新的拱坝形状优化方法[J]. 工程力学, 2005, 22(4): 179-186.
[11] 杨班权;刘又文;薛孟君;张玉春. 集中载荷作用下弹性平面刚性夹杂的形状优化[J]. 工程力学, 2004, 21(6): 156-160.
[12] 袁驷;张亿果. 有限元线法求解非线性模型问题——Ⅱ.扭转杆的最优截面[J]. 工程力学, 1993, 10(2): 8-16.
[13] 郑大素;欧贵宝;江允正. 用边界元法进行形状优化[J]. 工程力学, 1990, 7(2): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日