工程力学 ›› 2019, Vol. 36 ›› Issue (4): 44-51.doi: 10.6052/j.issn.1000-4750.2018.03.0116

• 基本方法 • 上一篇    下一篇

考虑大位移影响的解析型压扭杆单元

许晶1, 夏文忠1,2, 王宏志1, 蒋秀根1   

  1. 1. 中国农业大学水利与土木工程学院, 北京 100083;
    2. 中国电建集团华东勘测设计研究院有限公司, 杭州 311122
  • 收稿日期:2018-03-01 修回日期:2018-03-01 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 蒋秀根(1966-),男,江苏人,教授,硕士,主要从事结构工程方面的研究(E-mail:jiangxg@cau.edu.cn). E-mail:jiangxg@cau.edu.cn
  • 作者简介:许晶(1985-),女,河北人,讲师,博士,主要从事结构工程方面的研究(E-mail:xujing@cau.edu.cn);夏文忠(1992-),男,浙江人,硕士,主要从事结构工程方面的研究(E-mail:xwz7298@163.com);王宏志(1967-),男,江西人,副教授,博士,主要从事计算力学方面的研究(E-mail:climber@cau.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51279206);农业部农业设施结构工程重点实验室开放课题(201502);中央高校基本科研业务费专项资金项目(2015SY004)

ANALYTICAL ELEMENT FOR BAR SUBJECTED TO COMPRESSION AND TORSION CONSIDERING THE LARGE DISPLACEMENT

XU Jing1, XIA Wen-zhong1,2, WANG Hong-zhi1, JIANG Xiu-gen1   

  1. 1. College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China;
    2. Power China, Huadong Engineering Corporation Limited, Hangzhou 311122, China
  • Received:2018-03-01 Revised:2018-03-01 Online:2019-04-25 Published:2019-04-15

摘要: 为提高压扭杆件内力和变形分析的精度和效率,以Vlasov扭转理论为基础,根据压扭杆件位移控制方程,考虑大位移和截面翘曲影响,构建了压扭杆的单元位移形函数,采用势能原理建立了压扭杆势能泛函。利用势能驻值变分原理得出了解析型压扭杆单元列式,并推导了用于杆件内力分析的单元刚度矩阵。将其与理论解、插值多项式单元进行对比,结果表明:该文构造的单元计算压扭杆转角及翘曲率和临界荷载的精度高于插值多项式单元,且不需划分单元,即可保证计算结果与理论解一致,满足了高精度、高效率的要求,可应用于解决实际工程问题。

关键词: 压扭, 解析形函数, 变分原理, 有限元, 单元刚度矩阵

Abstract: To improve the accuracy and efficiency in calculating the inter force and deformation of bar under compression and torsion, the shape function was determined by considering the section warping and the effect of large displacement, based on Vlasov restrained torsion theory and according to the displacement controlling equation for bar. Potential energy functional of bar subjected to compression and torsion was established by applying potential energy principle. Analytical element formulations for bar were received and element stiffness matrix was obtained via variational principle of potential energy stationary value. Comparisons among the calculation results of proposed element, theoretical solution, and interpolation polynomial element are conducted, and the results show that the solution of analytical element by one element number is in accordance with the theoretical solution. The analytical element can satisfy the high accuracy and efficiency requirement and can be applied in practice.

Key words: compression and torsion, analytical function, variation principle, finite element, element stiffness matrix

中图分类号: 

  • TB125
[1] 韩林海. 钢管混凝土压扭构件工作机理研究[J]. 哈尔滨建筑工程学院学报, 1994, 27(4):35-40. Han Linhai. Study on the behavior mechanism of concrete filled steel tubular (CFST) member subjected to compression and torsion[J]. Journal of Harbin Architecture & Civil Engineering Institute, 1994, 27(4):35-40. (in Chinese)
[2] 王国周, 瞿履谦. 钢结构:原理与设计[M]. 北京:清华大学出版社, 1992. Wang Guozhou, Qu Lüqian. Steel structure-principle and design[M]. Beijing:Tsinghua University Press, 1992. (in Chinese)
[3] 黄宏, 郭晓宇, 陈梦成. 圆中空夹层钢管混凝土压扭构件有限元分析[J]. 建筑结构学报, 2013, 34(增刊1):50-56. Huang Hong, Guo Xiaoyu, Chen Mengcheng. Theoretical research on concrete filled double-skin steel tubular members subjected to compression and torsion[J]. Journal of Building Structures, 2013, 34(Suppl 1):50-56. (in Chinese)
[4] 童根树. 钢结构的平面外稳定[M]. 北京:中国建筑工业出版社, 2013. Tong Genshu. The out-plane stability of steel[M]. Beijng:China Architecture & Building Press, 2013. (in Chinese)
[5] Cheung Y K, Zienkiewicz O C. Plates and tanks on elastic foundation:an application of finite element method[J]. International Journal of Solids & Structures, 1965, 1(4):451-461.
[6] Timoshenko S P, Gere J M. Theory of elastic stability[M]. NewYork:McGraw-Hill, 1961.
[7] Vlasov V Z. Thin-walled elastic beams (Second edition)[M]. Jerusalem:Israel Program for Scientific Translation, 1961.
[8] 包世华, 周坚. 薄壁杆件结构力学[M]. 北京:中国建筑工业出版社, 1991. Bao Shihua, Zhou Jian. Structural mechanics of thin walled bar[M]. Beijing:China Building Industry Press, 1991. (in Chinese)
[9] 李华煜, 辛克贵. 采用分段样条插值的半离散方法分析薄壁杆件[J]. 工程力学, 1992, 9(3):8-22. Li Huayu, Xin Kegui. Analysis of thin-walled members by a semi-discrete method using sectional spline function[J]. Engineering Mechanics, 1992, 9(3):8-22. (in Chinese)
[10] 杨隆宇, 李正良. 双角钢十字组合截面构件铰支轴心受压承载力研究[J]. 西南交通大学学报, 2011, 46(5):754-759. Yang Longyu, Li Zhengliang. Bearing capacity of pinned-end built-up cruciform section members formed by two equal-leg angles under compression load[J]. Journal of Southwest Jiaotong University, 2011, 46(5):754-759. (in Chinese)
[11] 秦剑, 万建成, 夏拥军, 等. 轴心受压开口薄壁构件弹塑性屈曲荷载的统一计算方法[J]. 建筑结构学报, 2017, 38(5):18-23. Qin Jian, Wan Jiancheng, Xia Yongjun, et al. Integrated calculation method for elasto-plastic buckling load of thin-walled axial compression member with open cross-section[J]. Journal of Building Structures, 2017, 38(5):18-23. (in Chinese)
[12] Yuan Z, Huo S H, Geng X L. Stability of perfect and imperfect cylindrical shells under axial compression and torsion[J]. Journal of Central South University, 2014, 21(4):1264-1274.
[13] Rasmussen K J R, Hancock G J. Tests of high strength steel columns[J]. Journal of Constructional Steel Research, 1995, 34(1):27-52.
[14] 聂诗东, 戴国欣, 沈乐, 等. Q345GJ钢(中)厚板H形及箱形柱残余应力与轴压稳定承载力分析[J]. 工程力学, 2017, 34(12):171-182. Nie Shidong, Dai Guoxin, Shen Le, et al. Residual stress distribution and overall stability load-carrying capacitie of H-shaped and box section columns welded by Q345GJ structural steel plates under axial compression[J]. Engineering Mechanics, 2017, 34(12):171-182. (in Chinese)
[15] 李国强, 王彦博, 陈素文, 等. 高强钢焊接箱形柱轴心受压极限承载力试验研究[J]. 建筑结构学报, 2012, 33(3):8-14. Li Guoqiang, Wang Yanbo, Chen Suwen, et al. Experimental study on ultimate bearing capacity of axially compressed high strength steel columns[J]. Journal of Building Structures, 2012, 33(3):8-14. (in Chinese)
[16] Hsu H L, Liang L L. Performance of hollow composite members subjected to cyclic eccentric loading[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(3):443-461.
[17] Hsu H L, Hsieh J C. Seismic performance of steel-encased composite members with strengthening cross-inclined bars[J]. Journal of Constructional Steel Research, 2004, 60(3):1663-1679.
[18] Liu G R, Dai K Y, Nguyen T T. A smoothed finite element method for mechnics problems[J]. Computational Mechanics, 2007, 39(6):859-877.
[19] Zienkiewicz O C, Taylor R L. The finite element method[M]. 5th ed. Oxford:Butterworth Heinemann, 2000.
[20] Johnson C P, Will K M. Beam buckling by finite element procedure[J]. Journal of the Structural Division, ASCE, 1974, 100(ST3):669-685.
[21] Barsoum R S, Gallagher R H. Finite element analysis of torsional and torsional-flexural stability problems[J]. International Journal for Numerical Methods in Engineering, 1970, 2(3):335-352.
[22] Wang Q, Li W Y. Buckling of thin-walled compression members with shear lag using spline finite member element method[J]. Computational Mechanics, 1996, 18(2):139-146.
[23] Liu G R, Nguyen-Xuan H, Nguyen-Thoi T. Avariationally consistent FEM (VC FEM) for solution bounds and nearly exact solution to solid mechanics problems using quadrilateral elements[J]. International Journal for Nmuerical Methods in Engineering, 2011, 85(4):461-497.
[24] 岑松, 尚闫, 周培蕾, 等. 形状自由的高性能有限元方法研究的一些进展[J]. 工程力学, 2017, 34(3):1-14. Cen Song, Shang Yan, Zhou Peilei, et al. Advances in shape-free finite element methods:a review[J]. Engineering Mechanics, 2017, 34(3):1-14. (in Chinese)
[25] Cao Qiongqiong, Xu Jing, Cheng Xiaoke, Zhang Qingxia, Zhang Peng, Jiang Xiugen. Element for beam analysis based on parabolic distribution stiffness[C]. International Conference on Architectural Engineering and New Materials, Guangzhou, 2015:131-137.
[26] Tang Lifeng, Xu Jing, Wang Hongzhi, Chen Xinghua. Accurate element of compressive bar considering the effect of displacement[J]. Mathematical Problems in Engineering, 2015, 2015:1-8.
[27] 李潇, 王宏志, 李世萍, 等. 解析型Winkler弹性地基梁单元构造[J]. 工程力学, 2015, 32(3):66-72. Li Xiao, Wang Hongzhi, Li Shi ping, et al. Element structure of analytical Winkler elastic foundation beam[J]. Engineering Mechanics, 2015, 32(3):66-72. (in Chinese)
[28] 李静, 蒋秀根, 王宏志, 等. 解析型弹性地基Timoshenko梁单元[J]. 工程力学, 2018, 35(2):221-229, 248. Li Jing, Jiang Xiugen, Wang Hongzhi, et al. Analytical element for Timoshenko beam on elastic foundation[J]. Engineering Mechanics, 2018, 35(2):221-229, 248. (in Chinese)
[29] 夏文忠. 基于Vlasov约束扭转理论的扭杆分析单元构造[D]. 北京:中国农业大学, 2017. Xia Wenzhong. Development of constraint torsion elements on torsion bar based on Vlasov theory[D]. Beijing:China Agricultural University, 2017. (in Chinese)
[1] 徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135-146.
[2] 寇峻瑜, 赵鑫, 张鹏, 温泽峰, 金学松, 王平. 高速滚滑下轮轨表层材料的应变率水平估计[J]. 工程力学, 2019, 36(4): 239-247.
[3] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[4] 陈海, 郭子雄, 刘阳, 郭利涛. 新型组合剪力键抗剪机理及承载力计算方法研究[J]. 工程力学, 2019, 36(3): 159-168.
[5] 孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019, 36(2): 17-25.
[6] 江旭东, 李鹏飞, 刘铮, 滕晓艳. 球囊扩张式血管支架介入对弯曲血管的生物力学损伤研究[J]. 工程力学, 2019, 36(2): 239-248.
[7] 王丕光, 赵密, 李会芳, 杜修力. 一种高精度圆柱形人工边界条件:水-柱体相互作用问题[J]. 工程力学, 2019, 36(1): 88-95.
[8] 王勇, 张亚军, 龙帮云, 马帅, 张苏河, 袁广林. 基于钢筋应变差的混凝土双向板极限状态分析方法[J]. 工程力学, 2019, 36(1): 104-118.
[9] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[10] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15-22.
[11] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[12] 赵志, 戴靠山, 毛振西, 张采薇. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
[13] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[14] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[15] 刘晓, 徐建烨, 王兵. 高温后中空夹层钢管混凝土柱压弯机理分析[J]. 工程力学, 2018, 35(S1): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日