工程力学 ›› 2019, Vol. 36 ›› Issue (4): 188-195,205.doi: 10.6052/j.issn.1000-4750.2018.03.0108

• 土木工程学科 • 上一篇    下一篇

强震下隔震连续梁桥地震响应的温度效应研究

郑文智, 王浩, 沈惠军   

  1. 东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096
  • 收稿日期:2018-03-05 修回日期:2018-06-20 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 王浩(1980-),男,江西人,教授,博士,博导,主要从事桥梁监测与防灾研究(E-mail:wanghao1980@seu.edu.cn). E-mail:wanghao1980@seu.edu.cn
  • 作者简介:郑文智(1992-),男,甘肃人,博士生,主要从事桥梁减隔震研究(E-mail:wzzheng@seu.edu.cn);沈惠军(1994-),男,安徽人,硕士生,主要从事桥梁减隔震研究(E-mail:220171028@seu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578151);国家"万人计划"青年拔尖人才(W03070080);江苏省研究生科研与实践创新计划项目(KYCX18_0117)

THERMAL EFFECTS ON RESPONSE OF SEISMIC ISOLATED BRIDGES SUBJECTED TO STRONG GROUND MOTIONS

ZHENG Wen-zhi, WANG Hao, SHEN Hui-jun   

  1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China
  • Received:2018-03-05 Revised:2018-06-20 Online:2019-04-25 Published:2019-04-15

摘要: 基于某三跨隔震连续梁桥,分析了环境温度、隔震支座初始位移及铅芯热效应对其地震响应的影响。首先,分析了隔震支座产生初始位移的机理。在此基础上,选取36条近断层地震动记录,分别采用考虑与不考虑铅芯热效应的隔震支座模型,对该隔震连续梁桥进行了不同环境温度条件下的非线性动力时程分析,得到结构关键部位的动力响应。结果表明:低温环境条件下,环境温度、初始位移、铅芯热共同作用效应会使得隔震连续梁桥结构地震峰值位移明显减小,支座、墩底峰值剪力显著增大,环境温度对隔震梁桥地震峰值响应起主导作用;当环境温度超过常温(20℃)时,由于环境温度引起隔震支座力学性能显著退化,环境温度、隔震支座初始位移、铅芯热效应的共同作用使得结构地震峰值位移显著增大,此时初始位移与铅芯热对隔震支座峰值位移、剪力、墩底剪力影响更为显著。由于部分近场地震动作用下的结构峰值位移显著增大,使得其峰值剪力呈现出增大趋势。

关键词: 隔震梁桥, 铅芯橡胶隔震支座, 环境温度, 初始位移, 铅芯热效应, 动力响应

Abstract: Based on a three-span continuous seismic isolated bridge (SIB), the effects of ambient temperature, initial displacement and lead core heating (LCH) on the response of SIB were investigated. The mechanism of shrinkage-induced initial displacement of lead rubber bearings (LRBs) was analyzed. Subsequently, 36 near-fault seismic records, the deterioration and non-deterioration hysteretic models of LRBs were selected for this study. The time history analyses were conducted under different temperature conditions, and the dynamic responses of SIB were obtained. Results show that initial displacement, initial displacement and lead core heating had significant joint effects on the peak displacement of LRBs, which were significantly reduced under low temperature values. However, the peak shear force of LRBs and the base shear force of the piers increased significantly, and low temperatures played a more dominant role than other two factors. Due to the degradation of LRBs induced by temperature and lead core heating, the peak displacement of LRBs with the joint effects increased significantly when the ambient temperature was above 20. Herein the initial displacement and lead℃ core heating had more dramatic effects on the response of SIBs than the initial displacement. The peak shear force under partly selected near-fault excitations increased greatly since the corresponding peak displacement significantly increased.

Key words: bridge, lead rubber bearing, temperature, initial displacement, lead core heating, seismic response

中图分类号: 

  • U442.5+5
[1] 陈波, 郑瑾, 王建平. 桥梁结构温度效应研究进展[J]. 武汉理工大学学报, 2010, 32(24):79-83. Chen Bo, Zheng Jin, Wang Jianping. State-of-the-art of the temperature effects of bridges[J]. Journal of Wuhan University of Technology, 2010, 32(24):79-83. (in Chinese)
[2] Constantinou M C, Whittaker A S, Kalpakidis Y, et al. Performance of seismic isolation hardware under service and seismic loading[R]. New York:Multidisciplinary Center for Earthquake Engineering Research, 2007.
[3] 李黎, 叶昆, 江宜城, 等. 橡胶铅芯隔震支座力学性能的温度效应研究[J]. 华中科技大学学报:城市科学版, 2009, 26(3):1-3. Li Li, Ye Kun, Jiang Yicheng, et al. Thermal effect on the mechanical behavior of lead-rubber bearing[J]. Journal of HUST (Urban Science Edition), 2009, 26(3):1-3. (in Chinese)
[4] 沈朝勇, 周福霖, 温留汉·黑沙, 等. 不同桥梁隔震橡胶支座力学性能对比试验研究[J]. 土木工程学报, 2012, 45(增刊1):233-237. Shen Chaoyong, Zhou Fulin, Wenliuhan·Heisha, et al. Test study on mechanical property of different type of isolators for bridge[J]. China Civil Engineering Journal, 2012, 45(Suppl1):233-237. (in Chinese)
[5] 吴宜峰, 王浩, 李爱群, 等. 新型多功能隔震支座力学性能的数值模拟与实验验证[J]. 工程力学, 2018, 35(2):195-202. Wu Yifeng, Wang Hao, Li Aiqun, et al. Numerical simulation and experimental verification of the mechanical properties of multifunctional isolation bearings[J]. Engineering Mechanics, 2018, 35(2):195-202. (in Chinese)
[6] Wu Y F, Wang H, Li A Q, et al. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang UniversitySciencea, 2017, 18(5):363-376.
[7] Ozdemir G, Dicleli M. Effect of lead core heating on the seismic performance of bridges isolated with LRB in near-fault zones[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14):1989-2007.
[8] 秦川, 刘文光, 何文福, 等. 考虑铅芯温度效应的橡胶支座参数影响分析[J]. 振动与冲击, 2017, 36(10):182-189. Qin Chuan, Liu Wenguang, He Wenfu, et al. Comparative analysis of lead heating effects on lead rubber bearing behaviours[J]. Journal of Vibration and Shock, 2017, 36(10):182-189. (in Chinese)
[9] 石岩, 王东升, 孙治国, 等. 隔震斜交连续梁桥地震反应及环境温度影响研究[J]. 振动与冲击, 2014, 33(14):118-124. Shi Yan, Wang Dongsheng, Sun Zhiguo, et al. Seismic response of isolated continuous skew bridge and the effect of ambient temperature on seismic behavior of bridge[J]. Journal of Vibration and Shock, 2014, 33(14):118-124. (in Chinese)
[10] 杜永峰, 郑文智, 李万润, 等. 超长复杂基础隔震结构静动力特性温度相关性研究[J]. 工程力学, 2017, 34(7):69-78. Du Yongfeng, Zheng Wenzhi, Li Wanrun, et al. Study on the dependency of static and dynamic characteristics with environmental temperature for long irregular baseisolated structures[J]. Engineering Mechanics, 2017, 34(7):69-78. (in Chinese)
[11] Comité Euro-International du Béton and Fédération International de la Précontrainte. CEB-FIP Model Code 1990[S]. London:Thomas Telford Ltd,1990.
[12] 彭全敏. 超长混凝土结构收缩裂缝控制研究[D]. 天津:天津大学, 2012. Peng Quanmin. Research on control of shrinkage cracks in super-long concrete structure[D]. Tianjing:Tianjin University, 2012. (in Chinese)
[13] Kalpakidis I V, Constantinou M C. Effects of heating and load history on the behavior of lead-rubber bearings[R]. New York:Multidisciplinary Center for Earthquake Engineering Research, 2008.
[14] Loh C H, Liao W I, Chai J F. Effect of near-fault earthquake on bridges:lessons learned from Chi-Chi earthquake[J]. Earthquake Engineering and Engineering Vibration, 2002, 1(1):86-93.
[15] Günay M S, Sucuoğlu H. Predicting the seismic response of capacity-designed structures by equivalent linearization[J]. Journal of Earthquake Engineering, 2009, 13(5):623-649.
[16] Tena-Colunga A, Pérez-Osornio M Á. Design displacements for base isolators considering bidirectional seismic effects[J]. Earthquake Spectra, 2006, 22(3):803-825.
[17] JTG/T B02-01-2008, 公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008. JTG/T B02-01-2008, Guidelines for seismic design of highway bridges[S]. Beijing:China Communications Press, 2008. (in Chinese)
[18] Hancock J, Bommer J J, Stafford P J. Numbers of scaled and matched accelerograms required for inelastic dynamic analyses[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(14):1585-1607.
[1] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196-205.
[2] 张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138-143,171.
[3] 程永锋, 朱照清, 卢智成, 张富有. 运动简谐振子作用下地基梁体系振动特性的半解析研究[J]. 工程力学, 2018, 35(7): 18-23.
[4] 李焱, 唐友刚, 朱强, 曲晓奇, 刘利琴. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
[5] 黄林杰, 周臻. 带填充墙自复位预应力混凝土框架结构的抗震性能分析[J]. 工程力学, 2018, 35(10): 162-171.
[6] 赵春风, 陈健云, 王静峰. AP1000核电厂房动力特性参数化分析与优化[J]. 工程力学, 2017, 34(增刊): 282-288.
[7] 郭义庆, 喻君. 单柱失效下结构连续倒塌的动力响应分析[J]. 工程力学, 2017, 34(4): 72-77.
[8] 朱志辉, 杨乐, 王力东, 蔡成标, 戴公连. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4): 78-87, 100.
[9] 陈万祥, 郭志昆, 邹慧辉, 张涛. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究[J]. 工程力学, 2017, 34(1): 180-191.
[10] 王沿朝, 陈清军. 地震波反演与地下结构的动力响应分析[J]. 工程力学, 2016, 33(增刊): 227-233.
[11] 巴振宁, 梁建文. 流体饱和半空间中埋置球面P1、P2和SV波源动力格林函数[J]. 工程力学, 2016, 33(5): 34-43.
[12] 徐明, 刘鹏飞. 整体式桥台研究综述[J]. 工程力学, 2016, 33(4): 1-8.
[13] 钱建固, 周仁义, 黄茂松. 高速移动荷载下弹性半空间饱和地基动应力响应[J]. 工程力学, 2016, 33(3): 39-46.
[14] 张斌, 罗雁云, 雷晓燕. 改进迭代过程的车轨耦合振动数值解法及应用[J]. 工程力学, 2016, 33(3): 128-134.
[15] 郭樟根, 曹双寅, 王安宝, 李悯粟, 孙伟民. 化爆作用下FRP加固RC板的试验研究及动力响应分析[J]. 工程力学, 2016, 33(3): 120-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日