工程力学 ›› 2019, Vol. 36 ›› Issue (4): 177-187.doi: 10.6052/j.issn.1000-4750.2018.03.0107

• 土木工程学科 • 上一篇    下一篇

设置自复位耗能支撑的斜拉桥横向抗震性能研究

徐龙河, 武虎   

  1. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2018-03-05 修回日期:2018-06-27 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 徐龙河(1976-),男,黑龙江人,教授,博士,博导,主要从事结构抗震研究(E-mail:lhxu@bjtu.edu.cn). E-mail:lhxu@bjtu.edu.cn
  • 作者简介:武虎(1991-),男,河北人,硕士生,主要从事结构抗震研究(E-mail:15121099@bjtu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51578058);北京市自然科学基金项目(8172038)

SEISMIC PERFORMANCE STUDY ALONG THE TRANSVERSE DIRECTION OF CABLE-STAYED BRIDGES WITH SELF-CENTERING ENERGY DISSIPATION BRACES

XU Long-he, WU Hu   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-03-05 Revised:2018-06-27 Online:2019-04-25 Published:2019-04-15

摘要: 为减小斜拉桥横桥向的地震响应,提出一种设置预压弹簧自复位耗能支撑的斜拉桥横向减震体系及支撑参数的设计方法。以一座斜拉桥为研究对象,对支撑参数进行了设计,并对塔梁固结体系和采用支撑的减震体系进行地震时程分析,从关键位置的地震响应、耗能能力等方面对支撑体系的抗震性能进行了研究。结果表明,横桥向采用预压弹簧自复位耗能支撑的斜拉桥减震体系利用支撑良好的滞回耗能特性,有效减小桥塔位移和应变,改善桥塔受力,减小主梁的残余位移。附加预压弹簧自复位耗能支撑对斜拉桥地震响应有良好减震控制效果,是一种合理的抗震体系。

关键词: 斜拉桥, 预压弹簧自复位耗能支撑, 减震设计, 横向, 抗震性能

Abstract: To mitigate the seismic-induced responses of cable-stayed bridges in the transverse direction, a transverse seismic mitigation system of cable-stayed bridges with pre-pressed spring self-centering energy dissipation braces was proposed in this study. A parameter design method for the braces was developed. Taking a cable-stayed bridge as the study example, the brace parameters were designed and the time history analysis of the tower-beam fixed system and the seismic mitigation system with braces were carried out. The seismic performance of the braced systems was analyzed in terms of the seismic responses at key locations, the energy dissipation capabilities, etc. The results show that the seismic mitigation system of the cable-stayed bridge with pre-pressed spring self-centering energy dissipation braces in the transverse direction utilizes the good hysteretic energy dissipation characteristics of the braces to reduce the displacement and strain of the bridge tower, improve the force distribution of the bridge tower and reduce the residual displacement of the beam. Cable-stayed bridges with pre-pressed spring self-centering energy dissipation braces has good mitigation and control effects on the seismic responses, which is a prominent and promising seismic resistance system.

Key words: cable-stayed bridge, pre-pressed spring self-centering energy dissipation brace, seismic mitigation design, transverse direction, seismic performance

中图分类号: 

  • TU352.1+1
[1] 聂利英, 郭其远, 李建中. 设置纵向大型液体粘滞阻尼器的大跨斜拉桥主梁纵向运动阻尼水平研究[J]. 工程力学, 2015, 32(9):141-148. Nie Liying, Guo Qiyuan, Li Jianzhong. Longitudinal damping level of girder motion of long-span cable stayed bridge with large longitudinal fluid viscous dampers[J]. Engineering Mechanics, 2015, 32(9):141-148. (in Chinese)
[2] Sharabash A M, Andrawes B O. Application of shape memory alloy dampers in the seismic control of cable-stayed bridges[J]. Engineering Structures, 2009, 31(2):607-616.
[3] 徐艳, 王瑞龙, 李建中, 等. 弹塑性钢阻尼器对中等跨径斜拉桥横桥向减震效果的振动台试验研究[J]. 工程力学, 2016, 33(8):101-109. Xu Yan, Wang Ruilong, Li Jianzhong, et al. Shaking table test of transverse seismic response reduction of medium-span cable-stayed bridges using yielding steel dampers[J]. Engineering Mechanics, 2016, 33(8):101-109. (in Chinese)
[4] Astiz M A, Camara A. Analysis and control of cable-stayed bridges subject to seismic action[J]. Structural Engineering International, 2014, 24(1):27-36.
[5] Xu L H, Fan X W, Li Z X. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127(15):49-61.
[6] Xu L H, Fan X W, Li Z X. Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(7):1065-1080.
[7] Xu L H, Fan X W, Lu D C, et al. Hysteretic behavior studies of self-centering energy dissipation bracing system[J]. Steel and Composite Structures, 2016, 20(6):1205-1219.
[8] 徐龙河, 樊晓伟, 逯登成, 等. 预压弹簧自恢复耗能支撑恢复力模型与滞回特性研究[J]. 工程力学, 2016, 33(10):116-122. Xu Longhe, Fan Xiaowei, Lu Dengcheng, et al. Study on restoring force model and hysterstic behaviors of pre-pressed spring self-centering energy dissipation brace[J]. Engineering Mechanics, 2016, 33(10):116-122. (in Chinese)
[9] 徐龙河, 代长顺, 樊晓伟, 等. 预压弹簧自恢复耗能支撑子结构抗震性能研究[J]. 建筑结构学报, 2017, 38(6):155-162. Xu Longhe, Dai Changshun, Fan Xiaowei, et al. Seismic performance research on substructures with pre-pressed spring self-centering energy dissipation brace[J]. Journal of Building Structures, 2017, 38(6):155-162. (in Chinese)
[10] Camara A, Cristantielli R, Astiz M A. Design of hysteretic dampers with optimal ductility for the transverse seismic control of cable-stayed bridges[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(4):1811-1833.
[11] Dwairi H M, Kowalsky M J, Nau J M. Equivalent damping in support of direct displacement-based design[J]. Journal of Earthquake Engineering, 2007, 11(4):512-530.
[12] 张宝胜, 布占宇, 徐爱敏. 斜拉桥地震响应分析中比例阻尼参考振型的选取[J]. 中国公路学报, 2008, 21(6):76-82. Zhang Baosheng, Bu Zhanyu, Xu Aimin. Reference vibration shape selection of proportional damping in seismic response analysis of cable-stayed bridge[J]. China Journal of Highway and Transport, 2008, 21(6):76-82. (in Chinese)
[13] 薛瑞杰. 大跨径斜拉桥地震作用相关设计标准规范比较[D]. 上海:同济大学, 2009. Xue Ruijie. Comparison of design standard Specifications for seismic behavior of long span cable-stayed bridges[D]. Shanghai:Tongji University, 2009. (in Chinese)
[14] Wilson J C, Gravelle W. Modelling of a cable-stayed bridge for dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 1991, 20(8):707-721.
[15] JTG/T B02-01-2008, 公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008. JTG/T B02-01-2008, Guidelines for seismic design of highway bridges[S]. Beijing:China Communications Press, 2008. (in Chinese)
[1] 王伟, 胡书领, 邹超, 陈越时. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206-213.
[2] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[3] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[4] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[5] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[6] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[7] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[8] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[9] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[10] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[11] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[12] 贾布裕, 颜全胜, 余晓琳, 杨铮. 考虑行人随机性的人行桥人致横向振动稳定性分析[J]. 工程力学, 2019, 36(1): 155-164.
[13] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[14] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[15] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日