工程力学 ›› 2019, Vol. 36 ›› Issue (4): 239-247.doi: 10.6052/j.issn.1000-4750.2018.02.0099

• 机械工程学科 • 上一篇    下一篇

高速滚滑下轮轨表层材料的应变率水平估计

寇峻瑜1, 赵鑫1, 张鹏1, 温泽峰1, 金学松1, 王平2   

  1. 1. 西南交通大学牵引动力国家重点实验室, 四川, 成都 610031;
    2. 西南交通大学高速铁路线路工程教育部重点实验室, 四川, 成都 610031
  • 收稿日期:2018-02-08 修回日期:2018-09-22 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 赵鑫(1981-),男,山东人,副研究员,博士,硕导,从事轮轨滚动接触行为及轮轨伤损研究(E-mail:xinzhao@home.swjtu.edu.cn). E-mail:xinzhao@home.swjtu.edu.cn
  • 作者简介:寇峻瑜(1992-),男,四川人,硕士生,从事轮轨滚动接触力学及损伤研究(E-mail:koujunyu312@163.com);张鹏(1994-),男,江西人,硕士生,从事轮轨滚动接触力学(E-mail:2529034451@qq.com);温泽峰(1976-),男,广西人,教授,博士,博导,从事轮轨关系和伤损研究(E-mail:zfwen@home.swjtu.edu.cn);金学松(1956-),男,江苏人,教授,博士,博导,从事轮轨关系及高速列车减振降噪研究(E-mail:xsjin@home.swjtu.edu.cn);王平(1969-),男,湖北人,教授,博士,博导,从事高速重载轨道结构及轨道动力学研究(E-mail:wping@home.swjtu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51675444,51775455);四川省国际科技合作与交流研发项目(2017HH0038)

ESTIMATION OF STRAIN RATES FOR WHEEL-RAIL SURFACE MATERIALS UNDER HIGH-SPEED ROLLING-SLIDING CONTACT

KOU Jun-yu1, ZHAO Xin1, ZHANG Peng1, WEN Ze-feng1, JIN Xue-song1, WANG Ping2   

  1. 1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;
    2. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2018-02-08 Revised:2018-09-22 Online:2019-04-25 Published:2019-04-15

摘要: 基于显式有限元法建立了三维轮轨高速瞬态滚动接触模型,详细分析了车轮以300 km/h速度滚过平顺钢轨表面、钢轨波磨(波长30 mm~170 mm)和宏观粗糙度(波长4 mm~30 mm)时钢轨表层0.25 mm~0.5 mm厚材料的平均应变率水平。结果显示:1)空间上,表层单元的应变率最大,时间上,表层材料的最高应变率发生于其进出接触斑的加、减载过程,且法向应变分量的应变率最大,其最值是Von Mises(V-M)等效应变率最值的1.50倍~1.86倍;2)网格大小和时间步长对应变率估计有不可忽略的影响;3)采用0.5 mm网格和0.32 μs步长,平顺轮轨表层单元的最大V-M等效应变率为64.1 s-1,材料弹塑性无影响,波磨和宏观粗糙度使弹性下的最大V-M等效应变率分别增至92.5 s-1和79.4 s-1;采用0.25 mm网格和0.042 μs步长的结果约为上述值的1.65倍~1.88倍;4)最大V-M等效应变率随速度线性增加,随摩擦系数的增加而单调递增,牵引系数的影响可忽略。

关键词: 高速滚滑, 瞬态滚动接触, 显式有限元法, 应变率, 宏观几何不平顺

Abstract: A 3D wheel-rail transient rolling contact model has been developed using the explicit finite element method to calculate the average strain rates of rail surface material of 0.25 mm~0.5 mm deep at 300 km/h, for which smooth rail, rail corrugation (wavelength of 30 mm~170 mm) and macro-roughness (wavelength of 4 mm~30 mm) are considered. Obtained results have shown:1) the highest strain rate occurs on the surface layer spatially, and during the loading or unloading processes of a material particle passing the contact patch; the rate of the normal strain is the largest among all strain components, being 1.50~1.86 times of Von Mises (V-M) strain rate; 2) element size and time step have important effects on strain rate results; 3) the V-M strain rate of smooth surfaces reaches the maximum of 64.1 s-1 when the element size is 0.5 mm and the time step is 0.32 μs, the material elasto-plasticity has no effects, the rail corrugation and macro-roughness result in the maximum V-M strain rate of 92.5 s-1 and 79.4 s-1 in elasticity respectively; the results are 1.65~1.88 times higher when an element size of 0.25 mm and a time step of 0.042 μs are used; 4) the maximum strain rate increases linearly with speed, monotonically with increasing friction coefficient, while the influence of traction coefficient is negligible.

Key words: high-speed rolling-sliding, transient rolling contact, explicit finite element method, strain rate, macroscopic irregularities

中图分类号: 

  • U213.4
[1] 王礼立. 高应变率下材料动态力学性能[J]. 力学与实践, 1982, 4(1):9-19. Wang Lili. Dynamic mechanical properties of material under high strain rates[J]. Mechanics in Engineering, 1982, 4(1):9-19. (in Chinese)
[2] Wang L L, Zhou F H, Sun Z J, et al. Rate-dependent damage evolution and its influence on dynamic behavior of materials at high strain rates[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2012, 25(1):27-33.
[3] 王仁, 黄可智, 朱兆祥. 塑性力学进展[M]. 北京:中国铁道出版社, 1998:119-143. Wang Ren, Huang Kezhi, Zhu Zhaoxiang. Plastic mechanics progress[M]. Beijing:China Railway Press, 1998:119-143. (in Chinese)
[4] Boyce B L, Dilmorb M F. The dynamic tensile behavior of tough, ultranhigh-strength steels at strain-sates from 0.0002 s-1 to 200 s-1[J]. International Journal of Impact Engineering, 2009, 36(2):263-271.
[5] Wang G Z, Ren X C, Chen J H. Effects of loading rate on fracture behavior of low-alloy steel with different grain sizes[J]. Metallurgical and Materials Transactions A, 2004, 35(6):1765-1778.
[6] 田越, 程育仁, 刘学文. 高应变率下U71Mn轨钢动态力学性能研究[J]. 中国铁道科学, 1992, 13(2):34-42. Tian Yue, Cheng Yuren, Liu Xuewen. Studies on the dynamic behavior of U71Mn rail steel under high strain rates[J]. China Railway Science, 1992, 13(2):34-42. (in Chinese)
[7] Zhao X, An B Y, Zhao X G, et al. Local rolling contact fatigue and indentations on high-speed railway wheels:Observations and numerical simulations[J]. International Journal of Fatigue, 2017, 103:5-16.
[8] 周家林, 吕兵, 潘成刚, 等. U71Mn钢的流动应力模型研究[J]. 热加工工业, 2013, 42(22):77-79. Zhou Jialin, Lü Bing, Pan Chenggang, et al. Research on flow stress model of U71Mn steel[J]. Hot Working Technology, 2013, 42(22):77-79. (in Chinese)
[9] 任学冲, 齐冀, 张斌, 等. 温度及应变速率对高速车轮钢形变行为的影响[J]. 中国铁道科学, 2015, 36(3):88-93. Ren Xuechong, Qi Ji, Zhang Bin, et al. Influence of temperature and strain rate on the deformation behavior of high-speed wheel steel[J]. China Railway Science, 2015, 36(3):88-93. (in Chinese)
[10] Jing L, Han L L, Zhao L M, et al. The Dynamic tensile behavior of railway wheel steel at high strain rates[J]. Journal of Materials Engineering & Performance, 2016, 25(11):4959-4966.
[11] Jing L, Su X Y, Zhao L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures[J]. Results in Physics, 2017, 7:1452-1461.
[12] 刘学文, 程育仁, 田越. 车轴钢在高应变率下动态力学性能的研究[J]. 铁道学报, 1993, 15(2):101-106. Liu Xuewen, Cheng Yuren, Tian Yue. Dynamic mechanical properties of axle steel under high strain rates[J]. Journal of Railway, 1993, 15(2):101-106. (in Chinese)
[13] 王玉玲, 成生伟. 动车组车轴用钢EA1N的热压缩流变应力行为[J]. 特殊钢, 2017, 38(1):63-65. Wang Yuling, Cheng Shengwei. Behavior of hot compressive flow stress of steel EA1N for high speed train axle[J]. Special Steel, 2017, 38(1):63-65. (in Chinese)
[14] 赵鑫, 温泽峰, 王衡禹, 等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18):1-7. Zhao Xin, Wen Zefeng, Wang Hengyu, et al. A 3-D transient finite element model for high-speed wheel-rail in rolling contact and its application[J]. Chinese Journal of Mechanical Engineering, 2013, 49(18):1-7. (in Chinese)
[15] Zhao X, Li Z L. The solution of frictional wheel-rail rolling contact with a 3-D transient finite element model:Validation and error analysis[J]. Wear, 2011, 271(1):444-452.
[16] 陆文教, 陶功权, 王鹏, 等. 地铁车轮磨耗对轮轨接触特性及动力学性能的影响[J]. 工程力学, 2017, 34(8):222-231. Lu Wenjiao, Tao Gongquan, Wang Peng, et al. Influence of wheel wear on wheel-rail contact behavior and dynamic performance of metro vehicle[J]. Engineering Mechanics, 2017, 34(8):222-231. (in Chinese)
[17] 刘超, 赵鑫, 安博洋, 等. 钢轨短波长波磨处的高速滚动接触分析[J]. 润滑与密封, 2015, 40(8):40-46. Liu Chao, Zhao Xin, An Boyang, et al. Study on high-speed wheel-rail rolling contact on short-pitch rail corrugation[J]. Lubrication Engineering, 2015, 40(8):40-46. (in Chinese)
[18] 谷永磊, 赵国堂, 王衡禹, 等. 轨道振动特性对高速铁路钢轨波磨的影响[J]. 中国铁道科学, 2016, 37(4):42-47. Gu Yonglei, Zhao Guotang, Wang Hengyu, et al. Effects of track vibration characteristics on rail corrugation of high speed railway[J]. China Railway Science, 2016, 37(4):42-47. (in Chinese)
[19] 寇峻瑜, 王衡禹, 赵鑫, 等. 钢轨脱碳层对轮轨瞬态滚动接触行为的影响分析[J]. 机械工程学报, 2018, 54(4):101-108. Kou Junyu, Wang Hengyu, Zhao Xin, et al. Influence of rail decarburization layer on wheel-rail transient rolling contact behavior[J]. Chinese Journal of Mechanical Engineering, 2018, 54(4):101-108. (in Chinese)
[20] 赵小罡, 赵鑫, 温泽峰, 等. 轮轨黏着系数对钢轨直裂纹瞬态扩展行为的影响[J]. 工程力学, 2018, 35(5):239-245. Zhao Xiaogang, Zhao Xin, Wen Zefeng, et al. Influence of wheel-rail adhesion coefficient on transient propagation of a vertical rail crack[J]. Engineering Mechanics, 2018, 35(5):239-245. (in Chinese)
[1] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
[2] 胡光辉, 徐涛, 陈崇枫, 杨学凯. 基于离散元法的脆性岩石细观蠕变失稳研究[J]. 工程力学, 2018, 35(9): 26-36.
[3] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
[4] 王国盛, 路德春, 杜修力, 李萌, 穆嵩. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6): 58-67.
[5] 赵小罡, 赵鑫, 温泽峰, 金学松. 轮轨黏着系数对钢轨直裂纹瞬态扩展行为的影响[J]. 工程力学, 2018, 35(5): 239-245.
[6] 刘浩, 李宏男. 考虑累积损伤退化及应变率效应的钢筋混凝土框架结构倒塌分析[J]. 工程力学, 2018, 35(4): 87-95.
[7] 李潇, 方秦, 孔祥振, 吴昊. 数值模拟中混凝土类材料应变率效应曲线的惯性效应修正[J]. 工程力学, 2018, 35(12): 46-53.
[8] 崔圣华, 裴向军, 黄润秋, 孟祥瑞, 朱凌. 团块缺陷结构对岩石静动力学特性影响的数值模拟分析[J]. 工程力学, 2018, 35(1): 88-97.
[9] 李艳, 范文, 赵均海, 翟越. 中低速长杆弹侵彻半无限岩石靶的动态响应研究[J]. 工程力学, 2017, 34(9): 139-149.
[10] 李志卫, 肖建庄, 谢青海. 高温后高强混凝土受压动态损伤[J]. 工程力学, 2017, 34(2): 78-84.
[11] 黄晓莹, 陶俊林. 三种建筑钢筋材料高应变率下拉伸力学性能研究[J]. 工程力学, 2016, 33(7): 184-189.
[12] 钟卫洲, 邓志方, 黄西成, 郝志明. 中应变率加载下云杉各向异性力学行为研究[J]. 工程力学, 2016, 33(5): 25-33.
[13] 康翔杰, 刘艳辉, 许浒, 赵世春, 余志祥. 低速冲击碰撞有限元分析中混凝土动态破坏面修正方法[J]. 工程力学, 2016, 33(3): 135-142.
[14] 曾翔,许斌. 考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析[J]. 工程力学, 2014, 31(9): 190-197.
[15] 许斌,曾翔. 钢筋混凝土长柱快速轴心受压试验与模拟研究[J]. 工程力学, 2014, 31(4): 210-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日