工程力学 ›› 2019, Vol. 36 ›› Issue (5): 76-91,109.doi: 10.6052/j.issn.1000-4750.2018.02.0098

• 土木工程学科 • 上一篇    下一篇

HRB500/HRB600钢筋作纵筋的混凝土框架梁端弯矩调幅试验研究

郑文忠1, 李玲1, 张弛2   

  1. 1. 哈尔滨工业大学结构工程灾变与控制教育部重点实验室, 黑龙江, 哈尔滨 150090;
    2. 中国地震局工程力学研究所, 黑龙江, 哈尔滨 150080
  • 收稿日期:2018-02-08 修回日期:2018-07-25 出版日期:2019-05-25 发布日期:2019-03-27
  • 通讯作者: 郑文忠(1965-),男,天津蓟县人,长江学者特聘教授,工学博士,博导,主要从事混凝土结构研究(E-mail:hitwzzheng@163.com). E-mail:hitwzzheng@163.com
  • 作者简介:李玲(1990-),女,黑龙江双鸭山人,博士生,主要从事混凝土结构研究(E-mail:liling0048hit@163.com);张弛(1992-),男,辽宁大连人,硕士生,主要从事混凝土结构研究(E-mail:zhangc399@outlook.com).
  • 基金资助:
    国家自然科学基金项目(51378146,51678190);教育部博士点基金资助项目(20132302110064)

EXPERIMENTAL STUDY ON THE MOMENT REDISTRIBUTION IN REINFORCED CONERETE FRAMES WITH HRB500/HRB600 STEEL BARS

ZHENG Wen-zhong1, LI Ling1, ZHANG Chi2   

  1. 1. Key Laboratory of Disaster and Control in Structural Engineering of China Ministry of Education, Harbin Institute of Technology, Harbin 150090, China;
    2. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
  • Received:2018-02-08 Revised:2018-07-25 Online:2019-05-25 Published:2019-03-27

摘要: 为研究HRB500钢筋和HRB600钢筋作纵筋的混凝土框架梁端弯矩调幅规律,完成了12榀单层两跨混凝土框架静力加载试验。试验结果表明:由于受拉纵筋屈服强度提高,一方面梁端塑性铰出现推迟,塑性铰形成前会发生一定的弯矩调幅;另一方面锚固于节点内的梁端受拉纵筋应变渗透引起较大的梁端附加转角,加大了弯矩调幅能力。将试验框架梁端弯矩调幅分塑性铰形成前后两阶段进行考察,第一阶段弯矩调幅幅度为10.35%~33.42%,第二阶段弯矩调幅幅度为3.39%~30.5%。基于试验结果,建立了与梁端控制截面相对受压区高度呈幂函数减小趋势、与受拉纵筋屈服强度和受拉纵筋屈服时刻应变渗透引起的梁端附加转角呈线性增长趋势的第一阶段弯矩调幅系数计算公式;建立了与总塑性转角(塑性铰区范围内的塑性转角与应变渗透引起的梁端附加塑性转角之和)呈幂函数增长趋势、与受拉纵筋屈服强度呈线性减小趋势的第二阶段弯矩调幅系数计算公式。

关键词: HRB500/HRB600钢筋, 混凝土框架, 应变渗透, 塑性铰, 弯矩调幅

Abstract: To study the moment redistribution in the concrete frame beams reinforced with HRB500 and HRB600 steel bars, 12 single-layer and two-span reinforced concrete frames were tested. The test results showed that, due to the increase in the yield strength of the tensile longitudinal steel bars, the formation of the plastic hinges at beam ends was delayed. A certain extent of moment redistribution occurred before the formation of the plastic hinges. In addition, the strain penetration of the steel bars anchored in the joints caused larger additional rotations of beam ends, which increased the moment redistribution. The moment redistribution was investigated in two stages according to whether the plastic hinges were formed or not. The first-stage moment redistribution was between 10.35%~33.42% and the second-stage moment redistribution was between 3.39%~30.5%. Based on the test results, expressions for moment redistribution of the two stages were proposed. The first-stage moment redistribution decreased as a power function with an increase in the relative depth of the compression zone, and increased linearly as the yield strength of the tensile longitudinal reinforcement and the additional rotation at yielding increased. The second-stage moment redistribution increased as a power function with an increase in the total plastic rotation (the sum of the rotation of plastic hinges and the additional plastic rotation due to strain penetration), and decreased linearly as the yield strength of the tensile longitudinal reinforcement increased.

Key words: HRB500/HRB600 steel bars, concrete frame, strain penetration, plastic hinge, moment redistribution

中图分类号: 

  • TU375
[1] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[2] GB/T 1499.2-2018, 钢筋混凝土用钢第2部分:热轧带肋钢筋[S]. 北京:中国标准出版社, 2018 Steel for the reinforcement of concrete-Part 2:Hot rolled ribbed bars[S]. Beijing:Standards Press of China, 2018. (in Chinese)
[3] Eligehausen R, Langer P. Rotation capacity of plastic hinges and allowable degree of moment redistribution. Universität Stuttgart-Universitätsbibliothek, 1987.
[4] GB/T 228.1-2010, 金属材料拉伸试验第1部分:室温试验方法[S]. 北京:中国建筑工业出版社, 2010. Metallic materials-tensile testing-Part 1:Method of test at room temperature[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[5] GB/T 50152-2012, 混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社, 2012. Standard methods for testing of concrete structures[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[6] 王英, 周威, 郑文忠. 跨中集中荷载下两跨UPC矩形截面连续梁塑性铰性能[J]. 土木工程学报, 2008, 41(5):26-32. Wang Ying, Zhou Wei, Zheng Wenzhong. Performance of plastic hinge in a two-span continuous rectangular cross-section beam prestressed with unbonded tendons under concentrated load at mid span[J]. China Civil Engineering Journal, 2008, 41(5):26-32. (in Chinese)
[7] 郑文忠, 王钧, 韩宝权, 等. 内置H型钢预应力混凝土连续组合梁受力性能试验研究[J]. 建筑结构学报, 2010, 31(7):23-31. Zheng Wenzhong, Wang Jun, Han Baoquan, et al. Experimental research on mechanical behavior of continuous prestressed composite concrete beams with encased H-steel[J]. Journal of Building Structures, 2010, 31(7):23-31. (in Chinese)
[8] 解恒燕, 郑文忠. 内置钢箱-混凝土连续组合梁受力性能试验[J]. 哈尔滨工业大学学报, 2010, 42(2):186-192. Xie Hengyan, Zheng Wenzhong. Experimental research on mechanical behavior of continuous encased steel box concrete beam[J]. Journal of Harbin Institute of Technology, 2010, 42(2):186-192. (in Chinese)
[9] Haskett M, Oehlers D J, Ali M S M, et al. Rigid body moment-rotation mechanism for reinforced concrete beam hinges[J]. Engineering Structures, 2009, 31(5):1032-1041.
[10] Wibowo A, Wilson J, Lam N, et al. Yield Penetration Displacement of Lightly Reinforced Concrete Columns[J]. Applied Mechanics & Materials, 2016, 845:119-125.
[11] 陈明政, 魏世宏, 黄林青. 三类预应力混凝土框架试验研究[J]. 工程力学, 2008(增刊1):169-174. CheN Mingzheng, Wen Shihong, Huang Linqing. Test investigation of three types pre-stressed concrete frame[J]. Engineering Mechanics, 2008(Suppl 1):169-174. (in Chinese)
[12] 王文炜, 吴文清, 李淑琴, 等. 简支梁转变为连续梁的弯矩调幅试验研究及其简化计算方法[J].工程力学, 2010, 27(5):147-152, 158. Wang Wenwei, Wu Wenqing, Li Shuqin, et al. Experimental study and calculation method on moment redistribution induced by transforming simply supported beams into continuous beams[J]. Engineering Mechanics, 2010, 27(5):147-152, 158. (in Chinese)
[13] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. Aci Structural Journal, 2007, 104(2):133-141.
[14] 白绍良, 傅剑平, 汤华. 框架中间层端节点梁筋直角弯折锚固端设计概念及方法的改进[J]. 重庆建筑工程学院学报, 1994, 16(3):1-12. Bai Shaoliang, Fu Jianping, Tang Hua. Improvements for the design concept and approach of the anchorage end 90-degree bent beam reinforcement in frame exterior joints[S]. Journal of Chongqing Architecture University, 1994, 16(3):1-12. (in Chinese)
[15] 白绍良, 傅剑平, 周中元. 末端带直角弯折的梁筋在端节点中的锚固性能试验研究[J]. 重庆建筑工程学院学报, 1994, 16(2):1-12. Bai Shaoliang, Fu Jianping, Zhou Zhongyuan. Experimental study on static anchorage behavior of beam bars with 90-degree hook in exterior joints of RC frames[S]. Journal of Chongqing Architecture University, 1994, 16(2):1-12. (in Chinese)
[16] Farahbod F, Mostofinejad D. Experimental study of moment redistribution in RC frames strengthened with CFRP sheets[J]. Composite Structures, 2011, 93(3):1168-1177.
[17] 李龙起, 周东华, 廖文远, 等. 腹板开洞钢-混凝土连续组合梁塑性铰及内力重分布试验研究[J]. 工程力学, 2015, 32(11):123-131. Li Longqi, Zhou Donghua, Liao Wenyuan, et al. Experimental study on plastic hinge and international force redistribution for continuous steel-concrete composite beams with web openings[J]. Engineering Mechanics, 2015, 32(11):123-131. (in Chinese)
[18] Lou T, Lopes S M R, Lopes A V. Factors affecting moment redistribution at ultimate in continuous beams prestressed with external CFRP tendons[J]. Composites Part B, 2014, 66(11):136-146.
[19] Bagge N, O'Connor A, Elfgren L, et al. Moment redistribution in RC beams-A study of the influence of longitudinal and transverse reinforcement ratios and concrete strength[J]. Engineering Structures, 2014, 80(5):11-23.
[20] Lou T, Lopes S M R, Lopes A V. Neutral axis depth and moment redistribution in FRP and steel reinforced concrete continuous beams[J]. Composites Part B, 2015, 70(3):44-52.
[1] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[2] 郑文忠, 李玲, 王英. HRB500/HRB600钢筋作纵筋的混凝土连续梁弯矩调幅试验研究[J]. 工程力学, 2019, 36(3): 79-94.
[3] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[4] 朱崇绩, 董毓利. 火灾下邻边简支邻边固支双向板极限承载力的能量计算法[J]. 工程力学, 2018, 35(8): 67-78,99.
[5] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[6] 张耀庭, 杨力, 张江, 张诚诚. PC框架结构基于易损性的“强柱弱梁”设计方法研究[J]. 工程力学, 2018, 35(7): 104-116.
[7] 侯和涛, 朱文灿, 曲哲, 崔士起. 屈曲约束支撑钢筋混凝土框架结构干式柔性梁柱节点的试验研究[J]. 工程力学, 2018, 35(6): 151-161.
[8] 张超, 薛素铎, 王广勇, 张东明. 火灾后型钢混凝土框架结构力学性能试验研究及分析[J]. 工程力学, 2018, 35(5): 152-161.
[9] 颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4): 69-77.
[10] 刘浩, 李宏男. 考虑累积损伤退化及应变率效应的钢筋混凝土框架结构倒塌分析[J]. 工程力学, 2018, 35(4): 87-95.
[11] 王树和, 张举兵. 基于地震损失风险钢筋混凝土框架结构弯矩增大系数评估[J]. 工程力学, 2018, 35(3): 132-140.
[12] 张家广, 吴斌, 赵俊贤. 防屈曲支撑加固钢筋混凝土框架的实用设计方法[J]. 工程力学, 2018, 35(3): 151-158.
[13] 潘毅, 阎勋章, 易路行, 白久林. 基于剪力比的防屈曲支撑-RC框架抗震设计方法研究[J]. 工程力学, 2018, 35(3): 96-105.
[14] 田建勃, 史庆轩, 刘云贺, 李慎, 马辉. PRC连梁-混合联肢剪力墙抗震性能分析[J]. 工程力学, 2018, 35(11): 53-67.
[15] 周洲, 于晓辉, 吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估[J]. 工程力学, 2018, 35(11): 134-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[2] 马恺泽;梁兴文;李 斌. 高轴压比方钢管高强混凝土柱抗震性能研究[J]. 工程力学, 2010, 27(03): 155 -162 .
[3] 童根树;罗桂发;张 磊. 横梁未加强型人字撑框架体系的抗侧性能[J]. 工程力学, 2011, 28(8): 89 -098 .
[4] 李顶河;卿光辉;徐建新. 基于径向基点插值函数的弹性力学Hamilton正则方程无网格法[J]. 工程力学, 2011, 28(10): 46 -051, .
[5] 张敏;马博;史耀武. 材料裂纹体J~Q断裂准则的工程化方法研究[J]. 工程力学, 2005, 22(2): 62 -66 .
[6] 马世麟;谭文锋;白象忠. 洛仑兹力的应力应变效应[J]. 工程力学, 2000, 17(1): 88 -93 .
[7] 岑松;龙志飞;龙驭球. 对转角场和剪应变场进行合理插值的厚薄板通用四边形单元[J]. 工程力学, 1999, 16(4): 1 -15 .
[8] 陈文钦. “珠江帆影”高层建筑的结构设计[J]. 工程力学, 1986, 3(4): 138 -145 .
[9] 蒋红;佟鼎;黄宁. 坡面风沙运动的风洞实验及数值模拟[J]. 工程力学, 2011, 28(12): 190 -198 .
[10] 王维玉;赵拓;丁继辉. 夯实水泥土桩复合地基动力特性和时程响应影响因素分析[J]. 工程力学, 2011, 28(增刊Ⅱ): 187 -191 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日