工程力学 ›› 2019, Vol. 36 ›› Issue (4): 167-176.doi: 10.6052/j.issn.1000-4750.2018.02.0096

• 土木工程学科 • 上一篇    下一篇

框架-预应力摇摆墙结构抗震性能试验研究

董金芝1,2, 张富文1, 李向民1   

  1. 1. 上海市建筑科学研究院上海市工程结构安全重点实验室, 上海 200032;
    2. 同济大学土木工程学院, 上海 200092
  • 收稿日期:2018-02-08 修回日期:2018-11-18 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 李向民(1973-),男,山东东营人,教授级高工,博士,从事既有建筑改造加固及建筑工业化研究(E-mail:13601902634@163.com). E-mail:13601902634@163.com
  • 作者简介:董金芝(1984-),女,山东德州人,高工,博士后,从事建筑结构抗震、减震及建筑结构化研究(E-mail:dongjz@tongji.edu.cn);张富文(1982-),男,山东嘉祥人,高工,博士,从事工程结构抗震与加固研究(E-mail:2004_zhang@tongji.edu.cn).
  • 基金资助:
    国家"十三五"重点研发计划项目(2017YFC0702900);上海市优秀技术带头人计划项目(16XD1422400)

EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF FRAME-PRESTRESSED ROCKING WALL STRUCTURES

DONG Jin-zhi1,2, ZHANG Fu-wen1, LI Xiang-min1   

  1. 1. Shanghai Key Laboratory of Engineering Structure Safety, Shanghai Research Institute of Building Sciences, Shanghai 200032, China;
    2. College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-02-08 Revised:2018-11-18 Online:2019-04-25 Published:2019-04-15

摘要: 该文提出了一种框架-预应力摇摆墙新型结构形式,其中摇摆墙脚部混凝土采用橡胶块替代,并通过墙内预埋的无粘结预应力筋与基础进行贯穿连接,摇摆墙与主体框架则采用耗能连接件相连。通过一榀框架试件和一榀框架-预应力摇摆墙试件的拟静力试验,研究了试件的破坏形态、承载能力、刚度退化和耗能能力等抗震性能。结果表明:框架-预应力摇摆墙结构的破坏有效地集中在耗能连接件上,梁端、柱端以及梁柱节点区的破坏相对较轻;极限承载能力提升显著,相较对比框架提高了112.4%;耗能能力较对比框架大幅提升,且各层层间变形趋于均匀;耗能连接件发挥出了良好的延性变形能力,且施工方便、造价低,实现了可更换构件与摇摆结构的有机结合。

关键词: 框架-预应力摇摆墙, 耗能连接件, 可更换, 抗震性能, 拟静力试验

Abstract: A new frame-prestressed rocking wall structure was presented in this paper, in which the foot area of the rocking wall was replaced by two rubber blocks. The wall was connected with the foundation by the embedded unbonded tendons and was connected to the columns of the frame with six I-shaped steel connectors. The seismic behavior of specimens including the failure mode, strength, stiffness degradation and energy dissipation capacity was studied through quasi-static tests of a frame specimen and a frame-prestressed rocking wall specimen. The results show that the deformation of the frame-prestressed rocking wall was effectively concentrated in the energy consumption connectors, while the damage to the ends of the beams and columns and the core area of beam-column joints was relatively light. The ultimate strength was greatly increased by 112.4% compared to the control frame. The hysteretic energy dissipation capacity was increased significantly, and the deformation of each story tended to be uniform to avoid story yielding mechanism. The I-type energy dissipation connectors had shown good ductility and deformability, which were replaceable and cheap. The combination of the replaceable components and the rocking wall structure was realized.

Key words: frame-prestressed rocking wall, energy consumption connector, replaceable, seismic performance, quasi-static test

中图分类号: 

  • TU375.4
[1] 吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4):130-139. Lu Xilin, Zhou Ying, Chen Cong. Research progress on innovative earthquake-resilient structural systems[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4):130-139. (in Chinese)
[2] 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9):1-10. Zhou Ying, Lu Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9):1-10. (in Chinese)
[3] 张富文, 许清风, 李向民. 摇摆墙结构体系研究进展[J]. 结构工程师, 2015, 31(6):224-231. Zhang Fuwen, Xu Qingfeng, Li Xiangmin. State-of-the-art on rocking wall structures[J]. Structural Engineers, 2015, 31(6):224-231. (in Chinese)
[4] 吴守君, 潘鹏, 张鑫. 框架-摇摆墙结构受力特点分析及其在抗震加固中的应用[J]. 工程力学, 2016, 33(6):54-60. Wu Shoujun, Pan Peng, Zhang Xin. Characteristics of frame rocking wall structure and its application in a seismic retrofit[J]. Engineering Mechanics, 2016, 33(6):54-60. (in Chinese)
[5] 曲哲, 和田章, 叶列平. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9):11-19 Qu Zhe, Wada Akira, Ye Lieping. Seismic retrofit of frame structures using rocking wall system[J]. Journal of Building Structures, 2011, 32(9):11-19. (in Chinese)
[6] Zibaei H, Mokari J. Evaluation of seismic behavior improvement in RC MRFs retrofitted by controlled rocking wall systems[J]. The Structural Design of Tall and Special Buildings, 2014, 23(13):995-1006.
[7] Grigorian C, Grigorian M. Performance control and efficient design of rocking-wall moment frames[J]. Journal of Structural Engineering, 2016, 142(2):04015139.
[8] Grigorian M, Tavousi S. Innovations in rocking wall-frame systems-theory and development[J]. International Journal of Advanced Structural Engineering, 2017, 9(3):205-217.
[9] Wu S, Pan P, Nie X, et al. Experimental investigation on reparability of an infilled rocking wall frame structure[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(15):2777-2792.
[10] 曹海韵, 潘鹏, 吴守君, 等. 框架-摇摆墙结构体系中连接节点试验研究[J]. 建筑结构学报, 2012, 33(12):38-46. Cao Haiyun, Pan Peng, Wu Shoujun, et al. Experimental study of connections of frame-rocking wall system[J]. Journal of Building Structures, 2012, 33(12):38-46. (in Chinese)
[11] 曹海韵. 框架摇摆墙结构抗震性能研究[D]. 北京:清华大学, 2012. Cao Haiyun. Study on seismic performance of Frame-rocking wall structure[D]. Beiing:Tsinghua University, 2012. (in Chinese)
[12] 杨树标, 谢波涛, 余丁浩, 等. 内嵌式框架-摇摆墙结构振动台试验研究分析[J]. 建筑科学, 2014, 30(9):31-35. Yang Shubiao, Xie Botao, Yu Dinghao, et al. Shaking table test analysis of frame structure with built-in rocking Wall[J]. Building Science, 2014, 30(9):31-35. (in Chinese)
[13] 杨树标, 闫路路, 贾剑辉, 等. 摇摆墙刚度对框架摇摆墙结构抗震性能的影响分析[J]. 世界地震工程, 2014, 30(4):27-33. Yang Shunbiao, Yan Lulu, Jia Jianhui, et al. Influence of rocking wall stiffness on seismic behavior of frame rocking wall structure[J]. World Earthquake Engineering, 2014, 30(4):27-33. (in Chinese)
[14] 杨树标, 赵国琴, 贾剑辉, 等. 内嵌式摇摆墙刚度对框架结构抗震性能的影响[J]. 山西建筑, 2015, 41(29):34-35. Yang Shubiao, Zhao Guoqin, Jia Jianhui, et al. The influence of the stiffness of the embedded rocking wall on the seismic performance of the frame structure[J]. Shanxi Architecture, 2015, 41(29):34-35. (in Chinese)
[15] 张富文, 李向民, 许清风, 等. 框架-摇摆墙结构抗震性能试验研究[J]. 建筑结构学报, 2015, 36(8):73-81. Zhang Fuwen, Li Xiangmin, Xu Qingfeng, et al. Experimental study on seismic behavior of framerocking wall structure[J]. Journal of Building Structures, 2015, 36(8):73-81. (in Chinese)
[16] 张富文, 李向民, 陈玲珠, 等. 一种框架摇摆墙结构的实现形式及其有限元分析[J]. 振动与冲击, 2016, 35(17):213-217. Zhang Fuwen, Li Xiangmin, Chen Lingzhu, et al. Design and finite element analysis for a new frame-rocking wall structure[J]. Journal of Vibration and Shock, 2016, 35(17):213-217. (in Chinese)
[17] JGJ/T 101-2015, 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 101-2015, Specification of testing methods for earthquake resistant building[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[18] GB/T 50152-2012, 混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社, 2012. GB/T 50152-2012, Testing methods of concrete structure[S]. Beijing:China Architecture & Building Press, 2012(in Chinese)
[1] 王伟, 胡书领, 邹超, 陈越时. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206-213.
[2] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[3] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[4] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[5] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[6] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[7] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[8] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[9] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[10] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[11] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[12] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[13] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[14] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[15] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日