工程力学 ›› 2019, Vol. 36 ›› Issue (4): 135-146.doi: 10.6052/j.issn.1000-4750.2018.02.0090

• 土木工程学科 • 上一篇    下一篇

多腔式多边形钢管混凝土柱偏心受压承载力研究

徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯   

  1. 武汉大学土木建筑工程学院, 湖北, 武汉 430072
  • 收稿日期:2018-02-07 修回日期:2018-06-27 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 徐礼华(1962-),女,安徽人,教授,博士,博导,主要从事钢管混凝土和纤维混凝土研究(E-mail:xulihuad@163.com). E-mail:xulihuad@163.com
  • 作者简介:宋杨(1992-),男,湖北人,硕士生,主要从事钢管混凝土研究(E-mail:songyanglucky1992@163.com);刘素梅(1978-),女,湖北人,副教授,博士,硕导,主要从事钢管混凝土和纤维混凝土研究(E-mail:1225101791@qq.com);李彪(1991-),男,河南人,博士生,主要从事钢管混凝土和纤维混凝土研究(E-mail:752919556@qq.com);余敏(1982-),男,湖北人,副教授,博士,硕导,主要从事钢管混凝土研究(E-mail:ceyumin@whu.edu.cn);周凯凯(1991-),男,河南人,硕士生,主要从事钢管混凝土研究(E-mail:1597545219@qq.com).
  • 基金资助:
    国家自然科学基金重点项目(51738011)

STUDY ON THE ECCENTRIC COMPRESSIVE BEARING CAPACITY OF POLYGONAL MULTI-CELL CONCRETE FILLED STEEL TUBULAR COLUMNS

XU Li-hua, SONG Yang, LIU Su-mei, LI Biao, YU Min, ZHOU Kai-kai   

  1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2018-02-07 Revised:2018-06-27 Online:2019-04-25 Published:2019-04-15

摘要: 以天津高银117大厦巨型柱为原型,按1/20缩尺设计制作11根多腔式多边形钢管混凝土柱偏压试件,通过静力试验研究其偏心受压性能,包括破坏形态、荷载-侧向挠度关系曲线和荷载-应变关系曲线,采用ABAQUS软件拓展分析钢管壁厚、长细比、偏心率和混凝土强度等参数对试件极限承载力的影响规律。研究结果表明:多腔式多边形钢管混凝土柱偏心受压试件主要发生弯曲型失稳破坏;提高混凝土强度或钢管壁厚,可提高试件的极限承载力;腔内钢筋笼可显著提高其延性及后期承载力;当长细比从24增加到70,其极限承载力下降38.6%;当偏心率从0.2增加到1,其极限承载力下降54.1%;基于有限元结果,参考相关的承载力计算方法,建立适用于六边形六腔及五边形四腔的钢管混凝土柱偏心受压承载力计算公式,可为实际工程应用提供参考。

关键词: 多腔式多边形, 钢管混凝土, 偏心受压, 有限元, 极限承载力

Abstract: Based on the giant columns of Goldin Finance 117 tower in Tianjin, 11 eccentric compressive test specimens of polygonal multi-cell concrete filled steel tubular columns were designed and fabricated at a scale of 1/20. Mechanical behavior of the specimens was studied through the eccentric compression test. The failure mode, the load-lateral deformation curve and the load-strain curve were investigated. The influence of the steel wall's thickness, slenderness ratio, eccentricity and concrete strength on the ultimate bearing capacity of the specimens were analyzed by using the software package ABAQUS. The results show that the eccentric compression specimens mainly demonstrated a flexible buckling failure; the ultimate bearing capacity of the specimen increased with the increase in the strength of concrete or steel wall's thickness; the late bearing capacity and ductility of the specimen could be increased notably by the reinforced cage in the specimens. When the slenderness ratio increased from 24 to 70, the ultimate bearing capacity decreased by 38.6%. When the eccentricity ratio increased from 0.2 to 1, the ultimate bearing capacity decreased by 54.1%. Based on the results from the finite element analysis and the subsequent calculations about the bearing capacity of the columns, a calculation formula of the bearing capacity for hexagonal six-cell and pentagon four-cell concrete filled steel tubular columns was developed which can be used as a reference for practical engineering implementation.

Key words: polygonal multi-cell, concrete filled steel tube, eccentric compression, finite element, ultimate bearing capacity

中图分类号: 

  • TU398+.9
[1] 杜国锋, 徐礼华, 徐浩然. 组合T形截面钢管混凝土柱偏心受压试验研究[J]. 建筑结构学报, 2010, 31(7):72-77. Du Guofeng, Xu Lihua, Xu Haoran. Study on composite T-shaped concrete filled steel tubular columns under eccentric compression[J]. Journal of Building Structures. 2010. 31(7):72-77. (in Chinese)
[2] 左志亮, 蔡健, 朱昌宏. 带约束拉杆L形钢管混凝土短柱的偏压承载力[J]. 工程力学, 2010, 27(7):161-167. Zuo Zhiliang, Cai Jian, Zhu Changhong. Bearing capacity of L-shape CFT stub columns with binding bars subjected to eccentric compression load[J]. Engineering Machanics, 2010, 27(7):161-167. (in Chinese)
[3] 曹万林, 徐萌萌, 董宏英, 等. 不同构造五边形钢管混凝土巨型柱轴压性能计算分析[J]. 工程力学, 2015, 32(6):99-108. Cao Wanlin, Xu Mengmeng, Dong Hongying, et al. Analysis on axial compression behavior of pentagonal CFST mega columns[J]. Engineering Machanics, 2015, 32(6):99-108. (in Chinese)
[4] 曹万林, 徐萌萌, 武海鹏, 等. 五边形钢管混凝土巨型柱偏压性能计算分析[J]. 自然灾害学报, 2015, 24(1):114-122. Cao Wanlin, Xu Mengmeng, Wu Haipeng, et al. Calculation analysis of eccentric compression behavior of pentagonal CFST mega columns[J]. Journal of Natural disasters, 2015, 24(1):114-122. (in Chinese)
[5] 沈祖炎, 林震宇. L形钢管混凝土柱钢框架滞回性能研究[C]. 结构工程新进展国际论坛, 2009, 65-99. Shen Zuyan, Lin Zhenyu. Hysteretic behaviors of steel frames with concrete-filled l-shaped steel tubular columns[C]. International Forum on New Progress In Structural Engineering, 2009, 65-99. (in Chinese)
[6] 张广泰, 姚亚楠, 荣彬, 等. T形截面方钢管混凝土组合异形柱压弯性能研究[J]. 建筑结构, 2014, 44(21):27-31. Zhang Guangtai, Yao Yanan, Rong Bin, et al. Study on mechanical properties of T-shaped column composed of concrete-filled square steel tubes under eccentric compression[J]. Building Structure, 2014, 44(21):27-31. (in Chinese)
[7] Yang Y, Wang Y, Fu F, et al. Static behavior of T-shaped concrete-filled steel tubular columns subjected to concentric and eccentric compressive loads[J]. Thin-Walled Structures, 2015, 95:374-388.
[8] Xu M, Zhou T, Chen Z, et al. Experimental study of slender LCFST columns connected by steel linking plates[J]. Journal of Constructional Steel Research, 2016, 127:231-241.
[9] Rong B, Feng C, Zhang R, et al. Compression-bending performance of L-shaped column composed of concrete filled square steel tubes under eccentric compression[J]. International Journal of Steel Structures, 2017, 17(1):325-337.
[10] 刘鹏, 殷超, 李旭宇, 等. 天津高银117大厦结构体系设计研究[J]. 建筑结构, 2012, 42(3):1-9. Liu Peng, Yin Chao, Li Xuyu, et al. Structural system design and study of Tianjin Goldin 117 mega tower[J]. Building Structure, 2012, 42(3):1-9. (in Chinese)
[11] GB 50936-2014钢管混凝土结构技术规范[S]. 北京:中国建筑工业出版社, 2014. GB 50936-2014, Technical standard of concrete filled steel tubular structures[S]. Beijing:China Building Industry Press, 2014. (in Chinese)
[12] GB/T 50081-2002, 普通混凝土力学性能试验方法标准[S]. 北京:中国计划出版社, 2002. GB/T 50081-2002, Ordinary concrete mechanical properties of the standard test method[S]. Beijing:China Plan Press, 2002. (in Chinese)
[13] GB/T 228-2002, 金属材料室温拉伸试验方法[S]. 北京:中华人民共和国国家质量监督检验检疫总局, 2002. GB/T 228-2002, Metallic material room temperature pulling test method[S]. Beijing:General Administration of Quality supervision, Inspection and Quarantine of the People's Republic of China, 2002. (in Chinese)
[14] 徐礼华, 徐鹏, 侯玉杰, 等. 多腔式多边形钢管自密实高强混凝土短柱轴心受压性能试验研究[J]. 土木工程学报, 2017, 50(1):37-45. Xu Lihua, Xu Peng, Hou Yujie, et al. Experimental study in axial compression behavior of short polygonal multi-cell self-compacting high-strength CFST columns[J]. China Civil engineering journal, 2017, 50(1):37-45. (in Chinese)
[15] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2011. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Plan Press, 2011. (in Chinese)
[16] 韩林海. 钢管混凝土结构:理论与实践[M]. 北京:科学出版社, 2007:107-108. Han Linhai. Concrete filled steel tubular structures-theroy and practice[M]. Beijing:Science Press, 2007:107-108. (in Chinese)
[17] 侯晓英, 王华. 钢管混凝土柱偏心受压承载力计算方法探讨[J]. 郑州大学学报(理学版), 2002, 34(3):91-94. Hou Xiaoying, Wang Hua. Comparison of calculation methods for bearing capacity of CFST under eccentrically loading[J]. Journal of Zhengzhou University:Natural Science Press, 2002, 34(3):91-94. (in Chinese)
[18] 蔡绍怀. 现代钢管混凝土结构(修订版)[M]. 北京:人民交通出版社, 2007:81-83. Cai Shaohuai. Modern steel tube confined concrete structures (Revised Edition)[M]. Beijing:China Communication Press, 2007:81-83. (in Chinese)
[19] 徐鹏. 多腔钢管高强混凝土柱轴心受压工作机理与承载力研究[D]. 武汉:武汉大学, 2017:50-55. Xu Peng. Study on working mechanism and bearing capacity of high-strength concrete filled multi-cell steel tube columns[D]. Wuhan:Wuhan University, 2017:50-55. (in Chinese)
[20] 王立长, 曹万林, 徐萌萌, 等. 五边形截面钢管混凝土巨型柱受压性能试验研究[J]. 建筑结构学报, 2014, 35(1):77-84. Wang Lichang, Cao Wanlin, Xu Mengmeng, et al. Experimental research on compression behavior of pentagonal cross-section CFST mega-columns[J]. Journal of Building Structures, 2014, 35(1):77-84. (in Chinese)
[1] 许晶, 夏文忠, 王宏志, 蒋秀根. 考虑大位移影响的解析型压扭杆单元[J]. 工程力学, 2019, 36(4): 44-51.
[2] 寇峻瑜, 赵鑫, 张鹏, 温泽峰, 金学松, 王平. 高速滚滑下轮轨表层材料的应变率水平估计[J]. 工程力学, 2019, 36(4): 239-247.
[3] 陈海, 郭子雄, 刘阳, 郭利涛. 新型组合剪力键抗剪机理及承载力计算方法研究[J]. 工程力学, 2019, 36(3): 159-168.
[4] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[5] 孙浩涵, 袁驷. 基于EEP超收敛解的自适应有限元法特性分析[J]. 工程力学, 2019, 36(2): 17-25.
[6] 江旭东, 李鹏飞, 刘铮, 滕晓艳. 球囊扩张式血管支架介入对弯曲血管的生物力学损伤研究[J]. 工程力学, 2019, 36(2): 239-248.
[7] 王丕光, 赵密, 李会芳, 杜修力. 一种高精度圆柱形人工边界条件:水-柱体相互作用问题[J]. 工程力学, 2019, 36(1): 88-95.
[8] 王勇, 张亚军, 龙帮云, 马帅, 张苏河, 袁广林. 基于钢筋应变差的混凝土双向板极限状态分析方法[J]. 工程力学, 2019, 36(1): 104-118.
[9] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15-22.
[10] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[11] 刘晓, 徐建烨, 王兵. 高温后中空夹层钢管混凝土柱压弯机理分析[J]. 工程力学, 2018, 35(S1): 40-45.
[12] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[13] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[14] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[15] 赵志, 戴靠山, 毛振西, 张采薇. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日