工程力学 ›› 2019, Vol. 36 ›› Issue (4): 117-124.doi: 10.6052/j.issn.1000-4750.2018.01.0084

• 土木工程学科 • 上一篇    下一篇

内嵌CFRP筋加固宽缺口混凝土梁内力解析与试验研究

任振华1,2, 曾宪桃1, 孙浚博2   

  1. 1. 湖南工程学院, 湖南, 湘潭 411104;
    2. 西澳大学, 西澳洲, 珀斯 6009
  • 收稿日期:2018-01-29 修回日期:2018-07-21 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 曾宪桃(1963-),男,湖南汉寿人,教授,博士后,博导,主要从事建筑结构灾变破坏的力学研究及鉴定与加固(E-mail:xtzeng63@163.com). E-mail:xtzeng63@163.com
  • 作者简介:任振华(1981-),女,河南焦作人,副教授,博士,主要从事建筑结构灾变破坏的力学研究及鉴定与加固(E-mail:zhhren81@163.com);孙浚博(1992-),男,江苏连云港人,博士生,主要从事混凝土加固及混凝土3D打印技术研究(E-mail:835357191@qq.com).
  • 基金资助:
    国家自然科学基金项目(51478346);湖南省自然科学基金项目(2017JJ4016);湖南省教育厅重点项目(16A050);湖南省自然科学基金项目(2018JJ4042);中国博士后基金项目(2016M591707)

INTERNAL FORCE ANALYSIS AND EXPERIMENTAL INVESTIGATIONS OF WIDE-GAP CONCRETE BEAMS STRENGTHENED WITH NEARSURFACE MOUNTED CARBON FIBER REINFORCED PLASTIC BARS

REN Zhen-hua1,2, ZENG Xian-tao1, SUN Jun-bo2   

  1. 1. School of Building Engineering of Hunan Institute of Engineering, Xiangtan 411104, China;
    2. School of Civil, Environmental, and Mining Engineering, University of Western Australia, WA 6009, Australia
  • Received:2018-01-29 Revised:2018-07-21 Online:2019-04-25 Published:2019-04-15

摘要: 针对内嵌碳纤维增强塑料筋加固宽缺口混凝土梁体系,对碳纤维增强塑料筋、胶粘剂及混凝土三种介质两个界面的内力进行了力学解析分析,分析研究表明:剪应力是碳纤维增强塑料筋-胶粘剂-混凝土界面的粘结应力的主体,由内嵌加固宽缺口梁破坏试验可直接获取界面的剥离承载力;碳纤维增强塑料筋的受力相当于外表受到剪应力和正应力的圆柱体,剪应力靠胶结力提供,筋表面的平均剪应力可以通过宽缺口处外露部分的应变片实测得到,且与试验结果吻合较好,筋表面正应力的作用可以忽略;碳纤维筋横截面上的正应力在筋的长度方向成幂指数分布,沿筋截面径向分布不均匀,这导致其横截面中心的变形滞后于筋边缘的变形;槽内胶凝固后的内聚体是一个断面内圆外方的柱体,可以假定为是近似的厚壁圆筒,胶内聚体内的切向和径向应力对胶内聚体的剪切变形几乎没有影响;界面剥离破坏在比邻界面的混凝土中发生,因此混凝土强度将显著影响界面粘结性能与剥离承载力。

关键词: 内嵌, 碳纤维增强塑料筋, 加固, 宽缺口混凝土梁, 内力, 试验

Abstract: The internal force analysis was made on three media of the carbon fiber reinforced plastic (CFRP) bar, adhesive and concrete and two interfaces including the CFRP to adhesive and concrete to adhesive interfaces of wide-gap beams strengthened with near-surface mounted carbon fiber reinforced plastic bars. The findings show that the shear stress is the main part of the stress in the CFRP bar-adhesive-concrete interfaces. It is more convenient to obtain the interface strength by destruction tests of wide-gap concrete beams strengthened with near-surface mounted (NSM) CFRP bars. A CFRP bar under forces is equivalent to a cylinder that bears shear stress and normal stress on the surface. The shear stress was provided by the bonding force, and the effects of normal stress can be ignored. The average shear stress on the surface of a CFRP bar can be obtained by strain gages in the wide gap. The analysis results are in good agreement with the experimental results. The distribution of cross-sectional normal stress of the carbon fiber reinforced plastic bar is non-uniform and exhibits a power distribution along the length, which leads to certain differences about the deformation between the center and the edge of the cross section of the CFRP bar. The adhesive cohesive body after solidification inside the groove is a column section circle that can be approximately assumed as a thick wall cylinder. The glue cohesion in the tangential and radial stress has almost no effect on the shear deformation of the adhesive cohesive body. Interfacial debonding damage occurred in the concrete near the interface. The concrete strength will significantly affect the performance and the peel bond strength.

Key words: near-surface mounted, carbon fiber reinforced plastic bar, strengthening, wide-gap concrete beam, internal force, experimental investigation

中图分类号: 

  • TU375.1
[1] Ying Wu, Zhou Yufei, Wu Yanchun, et al. Analytical modeling of the bond-slip relationship at FRP-concrete interfaces for adhesively-bonded joints[J]. Composites Part B:Engineering, 2010, 41(6):667-672.
[2] 杜修力, 金浏. 考虑过渡区界面影响的混凝土宏观力学性质研究[J]. 工程力学, 2012, 29(12):72-79. Du Xiuli, Jin Liu. Research on the influence of interfacial transition zone on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29(12):72-79. (in Chinese)
[3] 陈光明, 刘迪, 李云雷, 等. 抗剪加固FRP与混凝土界面粘结性能的试验研究[J]. 工程力学, 2015, 32(7):164-175. Chen Guangming, Liu Di, Li Yunlei, et al. Bond behavior between shear strengthening ERP and concrete:An experimental study[J]. Engineering Mechanics, 2015, 32(7):164-175. (in Chinese)
[4] 李可, 曹双寅, 潘毅, 等. FRP-混凝土界面黏结性能疲劳试验方案比选分析[J]. 土木工程学报, 2013, 46(S2):185-189. Li Ke, Cao Shuangyin, Pan Yi, et al. Fatigue test program selection for FRP-to-concrete interfacial bonding properties[J]. China Civil Engineering Journal, 2013, 46(Suppl 2):185-189. (in Chinese)
[5] 何小兵, 严波, 申强. GFRP/CFRP-混凝土界面剪切性能[J]. 建筑材料学报, 2013, 16(6):1004-1011. He Xiaobing, Yan Bo, Shen Qiang. GFRP/CFRP composite and concrete interfacial shear performance of interplay hybrid[J]. Journal of Building Materials, 2013, 16(6):1004-1011. (in Chinese)
[6] 叶苏荣, 孙延华, 熊光晶. 基于"梁段"模型的FRP加固混凝土梁端界面剥离破坏分析[J]. 工程力学, 2012, 29(2):101-106, 113. Ye Surong, Sun Yanhua, Xiong Guangjing. Analysis on end debonding failure of FRP strengthened RC beams based on a "beam segment" model[J]. Engineering Mechanics, 2012, 29(2):101-106, 113. (in Chinese)
[7] 徐涛, 唐春安, 张永彬, 等. FRP-混凝土界面剥离破坏过程并行数值模拟[J]. 固体力学学报, 2011, 32(1):88-94. Xu Tao, Tang Chunan, Zhang Yongbin, et al. Parallel simulation of FRP-concrete debonding failure process[J]. Chinese Journal of Solid Mechanics, 2011, 32(1):88-94. (in Chinese)
[8] 郭诗惠. 孔搏, 蔡春声, 等. GFRP-混凝土组合板界面抗剪连接性能的试验研究[J]. 工程力学, 2017, 34(2):216-225. Guo Shihui, Kong Bo, Cai Chunsheng, et al. Experimental study on the interface behavior of GFRPconcrete composite deck[J]. Engineering Mechanics, 2017, 34(2):216-225. (in Chinese)
[9] 陈俊敏. 表层嵌贴CFRP板条-混凝土界面粘结性能的研究[D]. 长沙:长沙理工大学, 2012. Chen Junmin. Study of the bond performance between CFRP strips and concrete in NSM reinforcement[D]. Changsha:Changsha University of Science & Technology, 2012. (in Chinese)
[10] 史晓宇, 陈世鸣, 裘子豪. 组合板剪切-粘结机理及承载能力试验[J]. 同济大学学报(自然科学版), 2012, 40(5):666-672. Shi Xiaoyu, Chen Shiming, Qiu Zihao. Experiment investigation on shear bond mechanism and strength of composite slabs with steel profiles[J]. Journal of Tongji University (Natural Science), 2012, 40(5):666-672. (in Chinese)
[11] Hee Young Lee, Woo Tai Jung, Wonseok Chung. Flexural strengthening of reinforced concrete beams with pre-stressed near surface mounted CFRP systems[J]. Composite Structures, 2017, 3(163):1-12.
[12] 张拓. GFRP复合钢筋混凝土梁界面剪切破坏形式与规律[D]. 重庆:重庆交通大学, 2013. Zhang Tuo. Study on interface shear failure forms and rules of GFRP reinforced concrete compound beam[D]. Chongqing:Chongqing Jiaotong University, 2013. (in Chinese)
[13] Shi Jiawei, Zhu Hong, Wu Zhishen, et al. Bond behavior between basalt fiber-reinforced polymer sheet and concrete substrate under the coupled effects of freeze-thaw cycling and sustained load[J]. Journal of Composites for Construction, 2013,17(4):530-542.
[14] Nakaba K, Toshiyuki K, Tomoki F, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. ACI Structural Journal, 2001, 98(3):359-367.
[15] Ueda T, DaiJ G, Sato Y. A nonlinear bond stress-slip relationship for FRP sheet-concrete interface[C]. International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures, Kyoto, Japan, 2003(113):113-120.
[16] 任振华. 碳纤维增强材料加固π型混凝土梁应变协调关系及界面特性研究[D]:南京:河海大学, 2012. Ren Zhenhua. Research on relationship of strain coordination and interface properties for π RC beam strengthened with carbon fiber reinforced plastic[D]. Nanjing:Hohai University, 2012. (in Chinese)
[17] 任振华, 曾宪桃, 刘汉龙, 等. 复合内嵌筋材加固混凝土梁破坏模式分析[J]. 防灾减灾工程学报, 2012,32(6):657-664. Ren Zhenhua, Zeng Xiantao, Liu Hanlong, et al. The failure modes of reinforced concrete beams strengthened with multiple near-surface mounted bar[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(6):657-664. (in Chinese)
[18] 吴以莉, 姚谏, 朱晓旭. 内嵌CFRP加固混凝土梁粘结性能试验分析[J]. 建筑技术, 2010, 41(5):454-456. WuYili, Yao Jian, Zhu Xiaoxu. Analysis on bonding performance test of mound CFRP strengthened concrete beam[J]. Architecture Technology, 2010, 41(5):454-456. (in Chinese)
[19] 陆新征. FRP-混凝土界面行为研究[D]. 北京:清华大学, 2004. Lu Xinzheng. Studies on FRP-concrete interface[D]. Beijing:Tsinghua University, 2004. (in Chinese)
[20] 康红普, 崔千里, 胡滨, 等. 树脂锚杆锚固性能及影响因素分析[J]. 煤炭学报, 2014, 39(1):1-10. Kang Hongpu, Cui Qianli, Hu Bin, et al. Analysis on anchorage performances and affecting factors of resin bolts[J]. Journal of China Coal Society, 2014, 39(1):1-10. (in Chinese)
[21] 李青锋, 易厚, 朱川曲. 树脂锚杆锚固段剪应力分布及其损伤模式分析[J]. 湖南科技大学学报, 2016, 31(1):12-18. Li Qingfeng, Yi Hou, Zhu Chuanqu. Distribution of shear stress on resin bolt of anchoring rods and its damage model analysis[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2016, 31(1):12-18. (in Chinese)
[22] 徐芝纶. 弹性力学[M]. 北京:高等教育出版社, 2006:9-35, 54-87. Xu Zhilun. Theory of elasticity[M]. Beijing, Higher Education Press, 2006:9-35, 54-87.(in Chinese)
[23] 任振华, 曾宪桃, 周丰峻. 内嵌CFRP筋加固混凝土梁桥界面特性研究的宽缺口梁法[J]. 中国公路学报, 2015, 28(7):58-65. Ren Zhenhua, Zeng Xiantao, Zhou Fengjun. Research on interface properties of concrete beam bridges strengthened with near-surface Mounted carbon fiber reinforced plastic bar by using wide-notch concrete beam method[J]. China Journal of Highway and Transport, 2015, 28(7):58-65. (in Chinese)
[1] 史凤凯, 刘福胜, 王少杰, 岳艺博, 刘康, 黄兴淮. 自保温暗骨架承重墙抗震性能试验研究与分析[J]. 工程力学, 2019, 36(4): 158-166,187.
[2] 齐春, 何川, 封坤, 彭祖昭, 汤印, 代聪. 深部复合地层管片衬砌与可压缩层联合支护技术研究[J]. 工程力学, 2019, 36(4): 62-71,99.
[3] 文磊, 孔纲强, 张振东, 李青松. 海相淤泥质土中后注浆微型钢管桩浆液扩散及承载特性研究[J]. 工程力学, 2019, 36(4): 214-220,230.
[4] 李腾飞, 苏明周, 隋龑, 马磊, 韩丹. 高强钢组合K形偏心支撑钢框架抗震性能混合试验[J]. 工程力学, 2019, 36(4): 100-108,124.
[5] 胡伟成, 杨庆山, 张建. 湍流边界层中三维山丘地形风场大涡模拟[J]. 工程力学, 2019, 36(4): 72-79.
[6] 杨勇, 陈阳, 张锦涛, 林冰, 于云龙. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109-116.
[7] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[8] 陈海, 郭子雄, 刘阳, 郭利涛. 新型组合剪力键抗剪机理及承载力计算方法研究[J]. 工程力学, 2019, 36(3): 159-168.
[9] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[10] 于云龙, 杨勇, 薛亦聪, 刘亚平, 蒋雪雅. 型钢混凝土空腹叠合梁受剪承载力试验研究[J]. 工程力学, 2019, 36(3): 214-223.
[11] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[12] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[13] 施洲, 张勇, 杨仕力, 蒲黔辉. 铁路正交异性桥面加劲肋-横隔板局部疲劳受力特性研究[J]. 工程力学, 2019, 36(2): 124-133.
[14] 朱健, 赵均海, 谭平, 金建敏. 基于CFRP加固的钢混排架厂房全寿命周期地震成本研究[J]. 工程力学, 2019, 36(2): 141-153.
[15] 姜忻良, 张崇祥, 姜南, 罗兰芳. 设备-结构-土体系振动台实时子结构试验方法探讨[J]. 工程力学, 2019, 36(2): 177-185,223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日