工程力学 ›› 2019, Vol. 36 ›› Issue (5): 92-99.doi: 10.6052/j.issn.1000-4750.2018.01.0080

• 土木工程学科 • 上一篇    下一篇

高延性混凝土加固砖柱轴压性能试验研究

邓明科1, 李彤1, 樊鑫淼1,2   

  1. 1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055;
    2. 香港华艺设计顾问(深圳)有限公司, 广东, 深圳 518057
  • 收稿日期:2018-01-28 修回日期:2018-06-08 出版日期:2019-05-25 发布日期:2019-03-26
  • 通讯作者: 邓明科(1979-),男,四川南充人,教授,博士,博导,主要从事高性能材料与新型结构研究(E-mail:dengmingke@126.com). E-mail:dengmingke@126.com
  • 作者简介:李彤(1994-),男,陕西汉中人,硕士,从事建筑结构及抗震加固研究(E-mail:Ltong318@163.com);樊鑫淼(1987-),男,湖南郴州人,硕士,从事建筑结构及抗震加固研究(E-mail:Fanxinmiao20078768@163.com).
  • 基金资助:
    陕西省教育厅重点实验室项目(15JS048);军队后勤科研计划项目(CKJ16J055)

EXPERIMENTAL INVESTIGATION ON AXIAL COMPRESSION OF BRICK COLUMNS STRENGTHENED WITH HDC

DENG Ming-ke1, LI Tong1, FAN Xin-miao1,2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China;
    2. Hong Kong Huayi Design & Consultants Co., Ltd., Shenzhen, Guangdong 518057, China
  • Received:2018-01-28 Revised:2018-06-08 Online:2019-05-25 Published:2019-03-26

摘要: 高延性混凝土(HDC)是一种具有高强度、高韧性和高耐损伤能力的新型结构材料。该文提出采用HDC面层加固砖柱,对27个砖柱试件进行了轴压性能试验研究。结果表明:1)HDC作为砌筑砂浆,可对砌体形成一定的约束作用,使砖柱的轴压承载力和变形能力均有所提高;2)HDC面层发挥了较强的套箍作用,使砖柱处于三向受压状态,承载力和变形能力均得到较大幅度提高,且改善了砖柱的脆性破坏特征;3)HDC面层与砖柱具有良好的协调工作能力,对提高砖柱的整体性能具有重要作用。考虑HDC面层对砖柱的约束作用,提出了HDC面层加固砖柱的轴压承载力计算方法,计算结果与试验结果吻合较好。该文研究结果为砌体结构加固提供了一种新方法,具有良好的推广应用前景。

关键词: 砖柱, 高延性混凝土, 加固, 承载力, 变形能力

Abstract: Highly ductile fiber reinforced concrete (HDC) is a building material of high strength, ductility and damage tolerance. A new strengthening technique for brick columns with HDC layers was proposed in this study. 27 brick columns were tested in axial compressive loading. The experimental results showed that:1) HDC can provide confinement effects on masonry when used as mortar, thus the axial bearing capacity and deformability of brick columns were improved; 2) Under the confinement of HDC layers, the brick columns work in triaxial compression. The axial bearing capacity and the deformability were both significantly enhanced, and the brittle failure was delayed; 3) HDC layers and the core brick columns had good synergy work, which played an important role in enhancing the overall performance of brick columns. A calculation model was proposed to predict the ultimate strength of brick columns confined with HDC layers, and the calculation results agreed well with experimental results. Based on the tested results, the HDC can be used as an alternative material for masonry strengthening with broad engineering application.

Key words: brick column, highly ductile fiber reinforced concrete (HDC), strengthening, bearing capacity, deformability

中图分类号: 

  • TU362
[1] 王全凤, 薛婷怡, 黄奕辉, 等. FRP-砖界面粘结-滑移计算模型[J]. 工程力学, 2010, 27(12):130-134. Wang Quanfeng, Xue Tingyi, Huang Yihui, et al. Computational model for bond-slip behavior between FRP and brick[J]. Engineering Mechanics, 2010, 27(12):130-134. (in Chinese)
[2] 沈祥, 沙吾列提·拜开依, 阿力琴·阿布力提甫, 等. 网状CBF增强砖砌体轴心受力性能试验研究[J]. 工程力学, 2013, 30(增刊):109-114. Shen Xiang, Sawule Bekey, Aliqin Abulitipu, et al. Experimental research on CBF mesh reinforced brick masonry under axial compressive loading[J]. Engineering Mechanics, 2013, 30(Suppl):109-114. (in Chinese)
[3] 张斯, 徐礼华, 杨冬民, 等. 纤维布加固砖砌体墙平面内受力性能有限元模型[J]. 工程力学, 2015, 32(12):233-242. Zhang Si, Xu Lihua, Yang Dongmin, et al. Finite element modeling of FRP-reinforced masonry walls under in-plane loading[J]. Engineering Mechanics, 2015, 32(12):233-242. (in Chinese)
[4] 刘新强, 刘明, 由世岐. FRP加固实心黏土砖短柱轴心受压试验研究[J]. 土木工程学报, 2009, 42(10):1-7. Liu Xinqiang, Liu Ming, You Shiqi. Experimental study of the axial compression of short columns of solid clay bricks strengthened with FRP sheets[J]. China Civil Engineering Journal, 2009, 42(10):1-7. (in Chinese)
[5] 黄奕辉, 陈华艳, 罗才松. 玻璃纤维布包裹加固砖柱轴压试验研究与极限承载力分析[J]. 建筑结构学报, 2009, 30(2):136-142.Huang Yihui, Chen Huayan, Luo Caisong. Experiment study and analysis of ultimate capacity on brick masonry columns wrapped with glass fiber reinforced plastic sheet under axial compression[J]. Journal of Building Structures, 2009, 30(2):136-142. (in Chinese)
[6] Papanicolaou C G, Triantafillou T C, Papathanasiou M, et al. Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls:out-of-plane cyclic loading[J]. Materials and Structures, 2008, 41(1):143-157.
[7] Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1992, 188(11):2246-2264.
[8] Li V C. Engineered cementitious composites-tailored composites through micromechanical modeling[C]//Banthia N, Bentur A, Mufti A. Proceedings of Fiber Reinforced Concrete:Present and the Future. Montreal:Canadian Society for Civil Engineering, 1998:64-97.
[9] Li V C, WANG S, WU C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Mater J, 2001, 98(6):483-492.
[10] Li V C. On engineered cementitious composites (ECC):A review of the material and its applications[J]. Advance Concrete Technology, 2003, 1(3):215-230.
[11] Caner A, Zia P. Behavior and design of link slabs for jointless bridge decks[J]. PCI Journal, 1998, 43(3):68-80.
[12] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(增刊Ⅱ):23-67. Li Qinghua, Xu Shilang. Performance and application of Ultra High Toughness Cementitious Composite:a review[J]. Engineering Mechanics, 2009, 26(Suppl Ⅱ):23-67. (in Chinese)
[13] 徐世烺, 王楠, 尹世平. 超高韧性水泥基复合材料加固钢筋混凝土梁弯曲控裂试验研究[J]. 建筑结构学报, 2011, 32(9):115-122. Xu Shilang, Wang Nan, Ying Shiping. Experimental study on flexural characteristics of RC beams strengthened with post-poured ultra high toughness cementitious composites[J]. Journal of Building Structures, 2011, 32(9):115-122. (in Chinese)
[14] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2017, 38(6):86-94. Deng Mingke, Zhang Yangxi, Hu Hongbo. Experimental study on seismic behavior of reinforced concrete column strengthened with high ductile concrete[J]. Journal of Building Structures, 2017, 38(6):86-94. (in Chinese)
[15] 邓明科, 高晓军, 梁兴文. ECC面层加固砖墙抗震性能试验研究[J]. 工程力学, 2013, 30(6):168-174. Deng Mingke, Gao Xiaojun, Liang Xinwen. Experimental investigation on aseismic behavior of brick wall strengthened with ECC splint[J]. Engineering Mechanics, 2013, 30(6):168-174. (in Chinese)
[16] GB/T 50129-2011, 砌体基本力学性能试验方法标准[S]. 北京:中国建筑工业出版社, 2011. GB/T 50129-2011, Standard for test method of basic mechanics properties of masonry[S]. Beijing:China Architecture Industry Press, 2011. (in Chinese)
[17] GB/T 2542-2012, 砌墙砖试验方法[S]. 北京:中国建筑工业出版社, 2012 GB/T 2542-2012, Test methods for wall bricks[S]. Beijing:China Architecture Industry Press, 2012. (in Chinese)
[18] GB 50003-2011, 砌体结构设计规范[S]. 北京:中国建筑工业出版社, 2012. GB 50003-2011, Code for design of masonry structures[S]. Beijing:China Architecture Industry Press, 2012. (in Chinese)
[19] ACI Committee 440, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. Michigan:American Concrete Institute, 2008:35-37.
[20] 欧阳煜, 黄奕辉, 钱在兹, 等. 玻璃纤维(GFRP)片材约束混凝土的受力性能分析[J]. 土木工程学报, 2004, 37(3):26-34. Ouyang Yu, Huang Yihui, Qian Zaizi. Analysis of flexural behavior of concrete beam restrained with glass fiber reinforced plastic sheet[J]. China Civil Engineering Journal, 2004, 37(3):26-34. (in Chinese)
[21] 蔡绍怀, 焦占拴. 钢管混凝土短柱的基本性能和强度计算[J]. 建筑结构学报, 1984, 5(6):13-29. Cai Shaohuai, Jiao Zhanshuan. Behavior and ultimate strength of short concrete-filled steel tubular columns[J]. Journal of Building Structures, 1984, 5(6):13-29. (in Chinese)
[22] 欧阳煜, 刘能科. 外包钢加固轴心受压砖柱的受力性能分析[J]. 建筑结构, 2006, 36(11):27-29. Ouyang Yu, Liu Nengke. Analysis of flexural behavior of masonry column strengthened by wrapped steel outside under axial compression[J]. Building Structure, 2006, 36(11):27-29. (in Chinese)
[23] DBJ61/T112-2016, 高延性混凝土应用技术规程[S]. 北京:中国建材工业出版社, 2016. DBJ61/T112-2016, Technical specification for application of high ductile concrete[S]. Beijing:China Building Materials Press, 2016. (in Chinese)
[1] 吕一凡, 李国强, 王彦博. 超500 MPa级高强钢承压型螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(5): 200-207,215.
[2] 魏慧, 吴涛, 刘洋, 刘喜. 考虑尺寸效应的深受弯构件受剪模型分析[J]. 工程力学, 2019, 36(5): 130-136.
[3] 梁兴文, 汪萍, 徐明雪, 王照耀, 于婧, 李林. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119.
[4] 徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135-146.
[5] 庞瑞, 许清风, 梁书亭, 朱筱俊, 吴见丰. 分布式连接全装配RC楼盖竖向承载力与变形分析[J]. 工程力学, 2019, 36(4): 147-157.
[6] 王伟, 胡书领, 邹超, 陈越时. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206-213.
[7] 杨勇, 陈阳, 张锦涛, 林冰, 于云龙. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109-116.
[8] 任振华, 曾宪桃, 孙浚博. 内嵌CFRP筋加固宽缺口混凝土梁内力解析与试验研究[J]. 工程力学, 2019, 36(4): 117-124.
[9] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[10] 于云龙, 杨勇, 薛亦聪, 刘亚平, 蒋雪雅. 型钢混凝土空腹叠合梁受剪承载力试验研究[J]. 工程力学, 2019, 36(3): 214-223.
[11] 朱健, 赵均海, 谭平, 金建敏. 基于CFRP加固的钢混排架厂房全寿命周期地震成本研究[J]. 工程力学, 2019, 36(2): 141-153.
[12] 韦芳芳, 郑泽军, 喻君, 王永泉. 基于钢板屈曲分析的双钢板-混凝土组合剪力墙轴压承载力计算方法[J]. 工程力学, 2019, 36(2): 154-164.
[13] 杨慧, 何浩祥, 闫维明. 锈蚀和疲劳耦合作用下梁桥时变承载力评估[J]. 工程力学, 2019, 36(2): 165-176.
[14] 曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207-215.
[15] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(S1): 53-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[2] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[3] 刘耀儒;周维垣;杨强. 三维有限元并行EBE方法[J]. 工程力学, 2006, 23(3): 27 -31 .
[4] 曹晖;Michael I. Friswell. 基于模态柔度曲率的损伤检测方法[J]. 工程力学, 2006, 23(4): 33 -38 .
[5] 唐雪松;张建仁;李传习;徐飞鸿;潘军. 基于损伤理论的钢筋混凝土拱结构破坏过程的数值模拟[J]. 工程力学, 2006, 23(2): 115 -125 .
[6] 龚耀清;谢向东. 超高层建筑空间巨型框架结构与基础地基共同工作的半解析静力分析[J]. 工程力学, 2006, 23(1): 117 -122 .
[7] 张广清;陈勉. 水平井水压致裂裂缝非平面扩展模型研究[J]. 工程力学, 2006, 23(4): 160 -165 .
[8] 易伟建;张海燕. 结构随机延性需求谱的理论研究[J]. 工程力学, 2006, 23(5): 14 -19 .
[9] 隋允康;彭细荣;叶红玲. 应力约束全局化处理的连续体结构ICM拓扑优化方法[J]. 工程力学, 2006, 23(7): 1 -7 .
[10] 崔晓强;郭彦林;叶可明. 大跨度钢结构施工过程的结构分析方法研究[J]. 工程力学, 2006, 23(5): 83 -88 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日