工程力学 ›› 2019, Vol. 36 ›› Issue (3): 169-181.doi: 10.6052/j.issn.1000-4750.2018.01.0067

• 土木工程学科 • 上一篇    下一篇

结构性黄土劈裂注浆力学机理分析

周茗如1,2, 卢国文1,2, 王腾1,2, 王晋伟3   

  1. 1. 西部土木工程防灾减灾教育部工程研究中心, 甘肃, 兰州 730050;
    2. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室, 甘肃, 兰州 730050;
    3. 大连理工大学 建设工程学部水利工程学院, 辽宁, 大连 116024
  • 收稿日期:2018-01-26 修回日期:2018-07-12 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 卢国文(1993-),男,甘肃白银人,硕士生,主要从事黄土劈裂注浆理论研究(E-mail:guowen_lu93@163.com). E-mail:guowen_lu93@163.com
  • 作者简介:周茗如(1965-),男,陕西人,教授,硕士,主要从事黄土地区地基加固研究(E-mail:904105782@qq.com);王腾(1986-),男,山东人,博士生,主要从事黄土地区地基加固研究(E-mail:562998591@qq.com);王晋伟(1991-),男,山西人,博士生,主要从事黄土地区地基加固研究(E-mail:731363440@qq.com)
  • 基金资助:
    国家自然科学基金项目(51368038)

MECHANISM ANALYSIS OF STRUCTURED LOESS FRACTURING GROUTING

ZHOU Ming-ru1,2, LU Guo-wen1,2, WANG Teng1,2, WANG Jin-wei3   

  1. 1. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu 730050, China;
    2. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China;
    3. School of Hydraulic Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2018-01-26 Revised:2018-07-12 Online:2019-03-29 Published:2019-03-16

摘要: 为了在塑性力学与大变形理论基础上分析黄土地区劈裂注浆力学机理,将注浆初始阶段视为无限土体中的圆孔扩张问题,将孔周围的土体应力分布分为3个区域:弹性区、塑性区及破坏区。结合结构性黄土修正剑桥模型,在弹性区采用小变形理论,在塑性区、破坏区采用大变形理论。根据应力平衡方程、应力应变连续边界条件,推导了考虑排水和大变形时塑性区、破坏区半径及竖向、水平劈裂注浆压力的理论解答,最后结合工程算例进行论证。结果表明:该解答综合考虑了黄土的结构性参数、压缩模量、泊松比、内摩擦角、塑性破坏参数、剪胀系数、扩孔形式k及屈服准则等因素;同时,还分析了浆泡周围土体的应力应变分布解及在参数影响下的递变规律;经对比分析发现,该文的劈裂注浆压力理论计算值与工程实测值比较接近,初步证实了理论的可靠性,在黄土地区劈裂注浆工程中具有一定的实用价值。

关键词: 岩土力学, 圆孔扩张理论, 结构性黄土修正剑桥模型, 大变形理论, 劈裂注浆, 递变规律

Abstract: Based on the theory of plastic mechanics and large-deformation, this paper analyzes the mechanical mechanism of fracturing grouting in loess area. It treats the early phase of grouting as the problem of cavity expansion in infinite soil and divides the stress distribution due to the cavity expansion in soil into three zones: elastic zone, plastic zone and damage zone. Combined with the modified Cam-clay model of structural loess, the deformation following small deformation assumption in elastic zone and large deformation assumption in plastic and damage zones is taken into consideration. According to the stress equilibrium equation and stress-strain continuous boundary conditions, the radius of the plastic and damage zones, the vertical and horizontal fracturing grouting pressures are deduced considering the drainage conditions and large deformation. Finally, the paper demonstrates these by engineering cases. The results show that the solution takes into account the structural parameters, compressive modulus, Poisson's ratio, internal friction angle, damage coefficient, dilatancy coefficient, form of expanding, k, yield criterion and so on. At the same time, the stress-strain distribution solution for the soil around the slurry and the grading regularity of them under the influence of the parameters are analyzed. The comparative analysis shows that the calculated value of the fracturing grouting pressure is very close to the measured value in projects, which preliminarily verifies the reliability of the theory. Therefore, the paper has considerable practical value in fracturing grouting in loess area.

Key words: rock and soil mechanics, cavity expansion theory, modified Cam-clay model of structured loess, large deformation theory, fracturing grouting, grading regularity

中图分类号: 

  • TU472
[1] Vesic A S. Expansion of cavites in infinite soilmass[J]. Journal of the Soil Mechainics and Foundation Division, ASCE, 1972, 98(3):265-290.
[2] Dyba V P, Skibin E G. Evaluation of bearing capacity of driven piles, based on the results of solutionof the cylindrical cavity expansion problem[J]. Soil Mechanics & Foundation Engineering, 2017, 53(6):381-384.
[3] Chen S L, Abousleiman Y N. Cavity expansion in strain hardening frictional soils under drained condition[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2018, 42(1):1-11.
[4] Mo P Q, Yu H S. Drained cavity expansion analysiswith a unified state parameter model for clay and sand[J]. Canadian Geotechnical Journal, 2017, 67(2):1-13.
[5] Zhou H, Liu H L, Zha Y H, et al. Influence of stress anisotropy on the cylindrical cavity expansion in undrained elastic-perfectly plastic soil[J]. Science China Technological Sciences, 2018, 61(3):1-11.
[6] 吴创周, 杨林德, 李秋实. 弹脆塑性围岩应力和位移的广义SMP准则解[J]. 工程力学, 2013, 30(8):223-228. Wu Chuangzhou, Yang Linde, Li Qiushi. Perfect elastic-brittle-plastic solution of axisymmetric circular opening in rock mass on extended SMP criterion[J]. Engineering Mechanics, 2013, 30(8):223-228. (in Chinese)
[7] 孟强, 赵洪波, 茹忠亮, 等. 锚杆支护圆形隧洞弹塑性解[J]. 工程力学, 2015, 32(7):17-25. Meng Qiang, Zhao Hongbo, Gu Zhongliang, et al. Analytical solution for circular tunnels with rock bolts[J]. Engineering Mechanics, 2015, 32(7):17-25. (in Chinese)
[8] 刘时鹏, 施建勇, 雷国辉, 等. K0固结饱和土体柱孔扩张问题一种相似解法[J]. 工程力学, 2016, 33(12):128-134. Liu Shipeng, Shi Jianyong, Lei Guohui, et al. A similaritysolution method of cylindrical cavity expansion in K0 consolidation soils[J]. Engineering Mechanics, 2016, 33(12):128-134. (in Chinese)
[9] Carter J P, Booker J R, Yeung S K. Cavity expansion in cohesive frictional soils[J]. Geotechnique, 1986, 36(3):349-358.
[10] Collins I F, Stimpson J R. Similarity solutions for drained and undrained cavity expansions in soils[J]. Geotechnique, 1994, 44(1):21-34.
[11] 周航, 孔纲强, 刘汉龙. 正方形孔扩张弹性分析[J]. 工程力学, 2013, 30(12):182-186. Zhou Hang, Kong Gangqiang, Liu Hanglong. Elasitic analysis of square cavity expansion[J]. Engineering Mechanics, 2013, 30(12):182-186. (in Chinese)
[12] 陈昌富, 肖淑君. 基于统一强度理论考虑拉压模量不同散体材料桩承载力计算[J]. 工程力学, 2007, 24(10):105-112. Chen Changfu, Xiao Shujun. Bearing capacity of aggrecate pile with different ratio of tension modulus to compression modulus based on unified strength theory[J]. Engineering Mechanics, 2007, 24(10):105-112. (in Chinese)
[13] 王志丰, 沈永龙. 单根水平旋喷桩施工引起周围土体变形的实用计算方法研究[J]. 工程力学, 2017, 34(5):78-85. Wang Zhifeng, Shen Yonglong. An approach to calculated ground deformation induced by installation of single horizontal JET grout column[J]. Engineering Mechanics, 2017, 34(5):78-85. (in Chinese)
[14] 张亚国, 李镜培, 饶平平. 倾斜坡体中圆孔扩张的弹塑性力学解析[J]. 工程力学, 2014, 31(7):23-29. Zhang Yaguo, Li Jingpei, Rao Pingping. Elastic stress analysis of circular cavity expansion under a slope[J]. Engineering Mechanics, 2014, 31(7):23-29. (in Chinese)
[15] Zou J F, Du J M. A new approach for the quasi-plane strain-softening problem of cylindrical cavity expansion based on Cam-Clay model[J]. Journal of Mechanical Science & Technology, 2017, 31(3):1315-1320.
[16] Silvestri V, Tabib C. Analysis of cylindrical cavity expansion in modified cam clay with k0 consolidation[C]//International Congress and Exhibition Sustainable Civil Infrastructures:Innovative Infrastructure Geotechnology. Egypt:Springer, Cham, 2017:297-310.
[17] Rao P, Chen Q, Li L, et al. An elastoplastic solution for spherical cavity expansion in modified cam clay soil under drained condition[J]. International Journal of Geomechanics, 2017, 17(8):1.
[18] 胡伟, 刘明振. 非饱和土中球孔扩张的弹塑性分析[J]. 岩土工程学报, 2006, 28(10):1292-1297. Hu Wei, Liu Mingzhen. Elastic-panstic solution of expansion of sphere cavity in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10):1292-1297. (in Chinese)
[19] 骆亚生, 谢定义, 邵生俊, 等. 复杂应力条件下的土结构性参数[J]. 岩石力学与工程学报, 2004, 23(24):4248-4251. Luo Yasheng, Xie Dingyi, Shao Shengjun, et al. Structural parameter of soil under complex stress conditions[J]. Chinese Journal of Rock Mechanics and Engneering, 2004, 23(24):4248-4251. (in Chinese)
[20] 沈珠江. 土体结构性的数学模型-21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1):95-97. Sheng Zhujiang. The mathematic model of structural soils[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1):95-97. (in Chinese)
[21] 邓国华, 邵生俊, 佘芳涛. 结构性黄土的修正剑桥模型[J]. 岩土工程学报, 2012, 34(5):834-841. Deng Guohua, Shao Shengjun, She Fangtao. Modified Cam-clay model of structured loess[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5):834-841. (in Chinese)
[22] 罗战友, 夏建中, 龚晓南. 不同拉压模量及软化特性的球形孔扩张问题的统一解[J]. 工程力学, 2006, 23(4):22-27 Luo Zhanyou, Xia Jianzhong, Gong Xiaonan. Unified solution for the expansionof spherical cavity in strain-softening materials with different elastic moduli in tensile and compression[J]. Engineering Mechanics, 2006, 23(4):22-27. (in Chinese)
[1] 姚仰平, 田雨, 刘林. 三维各向异性砂土UH模型[J]. 工程力学, 2018, 35(3): 49-55.
[2] 王志丰, 沈水龙. 单根水平旋喷桩施工引起周围土体变形的实用计算方法研究[J]. 工程力学, 2017, 34(5): 78-83,104.
[3] 王军祥, 姜谙男. 完全隐式返回映射算法对岩土地基问题的求解[J]. 工程力学, 2013, 30(8): 83-89.
[4] 王柳江,刘斯宏,王子健,张凯. 堆载-电渗联合作用下的一维非线性大变形固结理论[J]. 工程力学, 2013, 30(12): 91-98.
[5] 赵明华, 占鑫杰, 邹新军, 陈庆. 饱和软粘土中沉桩后桩周土体固结分析[J]. 工程力学, 2012, 29(10): 91-97,105.
[6] 张志增;李仲奎;程丽娟. 基于主从式并行遗传算法的岩土力学参数反分析方法[J]. 工程力学, 2010, 27(10): 21-026.
[7] 荣传新;王秀喜;程 桦. 深厚冲积层冻结壁和井壁共同作用机理研究[J]. 工程力学, 2009, 26(3): 235-239.
[8] 胡 伟;黄 义;刘增荣;栗 蕾. 饱和粘土中挤土桩球形孔扩张的弹塑性分析[J]. 工程力学, 2008, 25(8): 0-187.
[9] 程晓东;程莉莎;叶贵如. 圆钢管混凝土压弯长柱非线性屈曲承载力的理论研究[J]. 工程力学, 2004, 21(6): 131-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日