工程力学 ›› 2019, Vol. 36 ›› Issue (4): 100-108,124.doi: 10.6052/j.issn.1000-4750.2018.01.0060

• 土木工程学科 • 上一篇    下一篇

高强钢组合K形偏心支撑钢框架抗震性能混合试验

李腾飞, 苏明周, 隋龑, 马磊, 韩丹   

  1. 西安建筑科技大学结构工程与抗震教育部重点实验室, 陕西, 西安 710055
  • 收稿日期:2018-01-19 修回日期:2018-12-07 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 隋龑(1978-),男,黑龙江人,高工,博士,从事工程结构抗震理论及试验方法研究(E-mail:suiyanmyy@163.com). E-mail:suiyanmyy@163.com
  • 作者简介:李腾飞(1993-),男,陕西人,博士生,从事新型钢结构体系和子结构混合仿真试验方法研究(E-mail:litengfei0217@163.com);苏明周(1971-),男,河南人,教授,博士,博导,从事钢结构稳定、新型结构体系和设计理论研究(E-mail:sumingzhou@163.com);马磊(1984-),男,陕西人,助工,硕士,从事工程结构抗震理论及试验方法研究(E-mail:malei0504@126.com);韩丹(1994-),女,陕西人,硕士生,从事工程结构抗震理论及试验方法研究(E-mail:779205027@qq.com).
  • 基金资助:
    国家自然科学基金项目(51178382);陕西省教育厅重点实验室项目(16JS048,16JS049,17JS061)

HYBRID TEST ON THE SEISMIC BEHAVIOR OF HIGH STRENGTH STEEL COMPISITE K-ECCENTRICALLY BRACED STEEL FRAMES

LI Teng-fei, SU Ming-zhou, SUI Yan, MA Lei, HAN Dan   

  1. Key Laboratory of Structural Engineering and Earthquake Resistance of the Ministry of Education, Xi'an Univ of Arch & Tech, Xi'an, Shaanxi 710055, China
  • Received:2018-01-19 Revised:2018-12-07 Online:2019-04-25 Published:2019-04-15

摘要: 为进一步研究混合试验方法的有效性以及高强钢组合K形偏心支撑钢框架的抗震性能,建立了一套基于OpenFresco试验平台的混合试验系统,进行了一个1:2缩尺的3层高强钢组合K形偏心支撑钢框架结构模型的混合试验。首先通过小工况的预加载研究试验系统的有效性,分析了试验子结构的位移加载精度,作动器加载时差。然后对试件进行正式的混合试验加载,分析了高强钢组合K形偏心支撑钢框架结构在不同工况下的自振频率、位移反应、水平地震作用、滞回性能以及关键部位应变。结果表明:作动器加载位移峰值与计算位移峰值比较接近,最大相对误差为13.60%,各工况下作动器平均每步的加载时差保持在20 ms左右;随着地震波加速度峰值的增大,模型的自振频率下降,刚度出现了一定的退化。各层的变形主要产生在消能梁段的腹板处,以剪切变形为主。模型结构在多遇地震和罕遇地震作用下的最大层间侧移角分别为1/1068和1/197,符合抗震设计规范对层间侧移角限值。综上,基于OpenFresco试验平台的混合试验系统能够较好的反应结构的地震响应,高强钢组合K形偏心支撑钢框架结构具有良好的抗震性能。

关键词: 高强钢, 偏心支撑, 抗震性能, OpenFresco, 混合试验

Abstract: A loading system of hybrid testing based on OpenFresco was established to study the effectiveness of the system. A hybrid test of a 1/2 scaled three-story high strength steel composite K-eccentrically braced steel frame (K-HSS-EBF) was conducted to investigate the seismic performance of the structure model. The effectiveness of the test system is studied by preloading the specimen under small load conditions. The displacement loading precision of the experimental substructure and the loading time difference of the actuators are analyzed. The natural frequency, displacement response, horizontal seismic force, hysteretic behavior and the strain of key parts were obtained from the hybrid test. The results show that the peak displacement of the actuator is close to the calculated peak displacement. The maximum relative error is 13.60% and the average loading time difference of the actuator was kept at approximately 20 ms under different conditions. With the increase of the seismic peak acceleration, the natural frequency decreases and the stiffness of the structure degrades slightly. The deformation of each story is mainly in the web of the energy dissipation beam, which is mainly shear deformation. The maximum inter-story drift of the model structure under the frequent and rare earthquakes are 1/1068 and 1/197, respectively, which meet the inter-story drift limit in the seismic design code for buildings. In conclusion, the hybrid test system based on OpenFresco can better respond to the seismic response of the structure and the K-HSS-EBFs have good seismic performance.

Key words: high strength steel, eccentrically braced, seismic performance, OpenFresco, hybrid test

中图分类号: 

  • TU317.1
[1] Takanashi K, Udagawa K, Seki M, et al. Nonlinear earthquake response analysis of structures by a computer actuator on-line system (Part 1 detail of the system)[J]. Transactions of the Architectural Institute of Japan, 1975, 229:77-83, 190.
[2] Stojadinovic B, Mosqueda G, Mahin S A. Event-driven control system for geographically distributed hybrid simulation[J]. Journal of Structural Engineering, 2006, 132(1):68-77.
[3] Chae Y, Ricles J M, Sause R. Large-scale real-time hybrid simulation of a three-story steel frame building with magneto-rheological dampers[J]. Earthquake Engineering & Structural Dynamics, 2015, 43(13):1915-1933.
[4] Pan P, Tomofuji H, Wang T, et al. Development of peer-to-peer (P2P) internet online hybrid test system[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(7):867-890.
[5] 郭玉荣, 范云蕾, 曾东, 等. 网络化结构实验室:桥梁结构远程拟动力试验平台开发与应用[J]. 工程力学, 2010, 27(增刊1):94-98. Guo Yurong, Fan Yunlei, Zeng Dong, et al. Networked structural laboratories:development and application of remote pseudo-dynamic testing platforms for bridge structures[J]. Engineering Mechanics, 2010, 27(Suppl 1):94-98. (in Chinese)
[6] 郭珺, 唐贞云, 陈适才, 等. 试件-加载系统相互作用对实时子结构试验系统稳定性影响[J]. 工程力学, 2016, 33(11):59-67. Guo Jun, Tang Zhenyun, Chen Shicai, et al. The influence of specimen-transfer-system interaction on the stability of real-time substructuring system[J]. Engineering Mechanics, 2014, 33(11):59-67. (in Chinese)
[7] 王贞, 刘进进, 吴斌. 实时混合试验近完全时滞补偿方法的参数确定[J]. 工程力学, 2014, 31(10):158-166. Wang Zhen, Liu Jinjin, Wu Bin. Parameter determination of near complete time delay compensation method for real time hybrid test[J]. Engineering Mechanics, 2014, 31(10):158-166. (in Chinese)
[8] 杨格, 王贞, 吴斌, 等. 建筑结构混合试验平台HyTest开发研究[J]. 建筑结构学报, 2015, 36(11):149-156. Yang Ge, Wang Zhen, Wu Bin, et al. Development of HyTest for structural hybrid simulation[J]. Journal of Building Structures, 2015, 36(11):149-156. (in Chinese)
[9] Dubina D, Stratan A, Dinu F. Dual high-strength steel eccentrically braced frames with removable links[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(15):1703-1720
[10] 段留省, 苏明周, 郝麒麟, 等. 高强钢组合K形偏心支撑钢框架抗震性能试验研究[J]. 建筑结构学报, 2014, 35(7):18-25. Duan Liusheng, Su Mingzhou, Hao Qilin, et al. Experimental study on seismic behavior of high strength steel composite K-type eccentrically braced frames. Journal of Building Structures, 2014, 35(7):18-25.
[11] 田小红, 苏明周, 连鸣, 等. 高强钢组合K形偏心支撑框架结构振动台试验研究[J]. 土木工程学报, 2016, 49(3):56-63. Tian Xiaohong, Su Mingzhou, Lian Ming, et al. Shake table test of high-strength steel composite K-eccentrically braced frames[J]. China Civil Engineering Journal, 2016, 49(3):56-63. (in Chinese)
[12] 李慎, 苏明周, 连鸣, 等. 多层高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 土木工程学报, 2015, 48(10):38-47. Li Shen, Lian Ming, Su Mingzhou, et al. Seismic behavior of multi-storey high strength steel composite K-eccentrically braced steel frame[J]. China Civil Engineering Journal, 2015, 48(10):38-47. (in Chinese)
[13] 李慎, 连鸣, 苏明周. 高强钢组合K形偏心支撑钢框架弹塑性状态的层剪力分布研究[J]. 工程力学, 2016, 33(12):167-175. Li Shen, Lian Ming, Su Mingzhou. Seismic shear of K-type eccentrically braced steel frames with high strength steel in elasto-plastic state[J]. Engineering Mechanics, 2016, 33(12):167-175. (in Chinese)
[14] 李慎, 苏明周, 连鸣. 基于性能设计的高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 建筑结构, 2015, 45(6):71-79. Li Shen, Lian Ming, Su Mingzhou. Seismic behavior study of K-typed eccentricially braced steel frames with high strength steel combination based on performance design method[J]. Building Structure, 2015, 45(6):71-79. (in Chinese)
[15] GB 50011-2010(2016年版), 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010(2016 edition), Code for seismic design of buildings[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
[16] Schellenberg A, Kim H K, Takahashi Y, et al. OpenFresco command language manual[M]. Berkeley, US:The Regents of the University of California, 2009:38-39.
[1] 杜咏, 孙亚凯, 李国强. 预应力钢绞线高温力学性能试验研究[J]. 工程力学, 2019, 36(4): 231-238.
[2] 王伟, 胡书领, 邹超, 陈越时. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206-213.
[3] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
[4] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[5] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[6] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[7] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[8] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[9] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[10] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[11] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[12] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[13] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[14] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[15] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日