工程力学 ›› 2019, Vol. 36 ›› Issue (6): 70-78,118.doi: 10.6052/j.issn.1000-4750.2018.01.0041

• 土木工程学科 • 上一篇    下一篇

高温下混凝土动态压缩行为细观数值研究

金浏, 郝慧敏, 张仁波, 杜修力   

  1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124
  • 收稿日期:2018-01-16 修回日期:2018-08-06 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 杜修力(1963-),男,四川广安人,长江学者特聘教授,博士,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:金浏(1985-),男,江苏泗阳人,教授,博士,主要从事混凝土及混凝土结构领域研究(E-mail:kinglew2007@163.com);郝慧敏(1994-),女,内蒙古乌兰察布人,硕士生,主要从事高温下混凝土动态力学行为研究(E-mail:hhummer123@163.com);张仁波(1989-),男,山东临邑人,博士生,主要从事混凝土结构抗火抗冲击行为研究(E-mail:zhangrenbo99@126.com).
  • 基金资助:
    国家自然科学基金项目(51822801);国家重点研发计划专项项目(2016YFC0701100);国家重点基础研究发展计划(973计划)项目(2015CB058000)

MESO-SCALE SIMULATIONS OF DYNAMIC COMPRESSIVE BEHAVIOR OF CONCRETE AT ELEVATED TEMPERATURE

JIN Liu, HAO Hui-min, ZHANG Ren-bo, DU Xiu-li   

  1. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2018-01-16 Revised:2018-08-06 Online:2019-06-25 Published:2019-05-31

摘要: 结合混凝土细观非均质性,考虑高温下细观组分力学性能退化效应及率效应的影响,建立了高温作用下混凝土动态压缩破坏行为及应变率效应研究的细观尺度数值分析模型。首先对混凝土热传导行为进行模拟,进而将"结果输出"作为"初始条件"对混凝土动态力学行为进行细观模拟,模拟与已有试验结果的良好吻合验证了数值方法的可行性及准确性。在此基础上,研究了高温加热后混凝土动态单轴压缩破坏行为及细观破坏机制,揭示了高温作用对动态压缩强度放大系数的影响规律。结果表明:高温加热后,混凝土动态冲击破坏集中在力学性能薄弱的加载端;相比于应变率效应,温度退化效应对混凝土力学性能(如强度、割线模量)影响更为显著。

关键词: 混凝土, 高温, 动态压缩, 应变率效应, 细观尺度

Abstract: A meso-scale numerical analysis model of concrete which studies the dynamic compression damage behavior and the strain rate effect at elevated temperature was established, which is combined with the meso-scale heterogeneity of concrete and considers the mechanical property degradation effect and the strain rate effect of micro-components at elevated temperature. In this approach, the heat conduction behavior was simulated initially, then the "result output" was used as "initial conditions", and the dynamic compressive behavior of concrete was conducted. The good agreement between the numerical simulation results and the experimental results indicates the feasibility and the reasonableness of the presented meso-scale approach. Subsequently, the dynamic uniaxial compression damage behavior and failure mechanism on the meso-scale of concrete at elevated temperature were studied. The influence regularity of high temperature on the dynamic compressive strength increase coefficient (CDIF) was revealed. The results indicate that the damage of concrete concentrates on the loading terminal with weak mechanical properties at elevated temperature. Furthermore, the temperature degradation effect on mechanical properties of concrete (such as strength and secant modulus) is more significant compared with the strain rate effect.

Key words: concrete, high temperature, dynamic compression, strain rate effect, meso-scale scale

中图分类号: 

  • TU528.1
[1] 赵建魁, 方秦, 陈力, 等. 爆炸与火荷载联合作用下RC梁耐火极限的数值分析[J]. 天津大学学报(自然科学与工程技术版), 2015, 10(48):873-880. Zhao Jiankui, Fang Qin, Chen Li, et al. Numerical analysis of fire resistance of RC beams subjected to explosion and fire load[J]. Journal of Tianjin University (Science and Technology), 2015, 10(48):873-880. (in Chinese)
[2] Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete[J]. ACI Journal Proceedings, 1953, 49(4):729-744.
[3] 胡时胜, 王道荣, 刘剑飞. 混凝土材料动态力学性能的实验研究[J]. 工程力学, 2001, 18(5):115-118. Hu Shisheng, Wang Daorong, Liu Jianfei. Experimental study of dynamic mechanical behavior of concrete[J]. Engineering Mechanics, 2001, 18(5):115-118. (in Chinese)
[4] Ma Q, Guo R, Zhao Z, et al. Mechanical properties of concrete at high temperature-A review[J]. Construction and Building Materials, 2015, 93:371-383.
[5] Nassif A. Postfire full stress-strain response of fire-damaged concrete[J]. Fire and Materials, 2006, 30(5):323-332.
[6] 李亮, 李彦. 基于热力学原理的混凝土热-力耦合本构模型[J]. 北京工业大学学报, 2016, 42(4):554-560. Li Liang, Li Yan. Thermo-mechanical coupling constitutive model of concrete based on thermodynamics[J]. Journal of Beijing University of Technology, 2016, 42(4):554-560. (in Chinese)
[7] 沈玲华, 王激扬, 徐世烺, 等. 不同胶凝材料的精细混凝土高温后力学性能[J]. 工程力学, 2015, 32(增刊1):248-253, 260. Shen Linghua, Wang Jiyang, Xushilang, et al. Mechanical property of fine grained concrete with different cementing material after exposure to high-temperature[J]. Engineering Mechanics, 2015, 32(Suppl 1):248-253, 260. (in Chinese)
[8] Willam K, Rhee I, Xi Y. Thermal degradation of heterogeneous concrete materials[J]. ASCE Journal of Materials in Civil Engineering, 2005, 17(3):276-285.
[9] Xotta G, Mazzucco G, Salomoni V A, et al. Composite behavior of concrete materials under high temperatures[J]. International Journal of Solids and Structures, 2015, 64/65:86-99.
[10] 陶俊林, 秦李波, 李奎, 等. 混凝土高温动态压缩力学性能实验[J]. 爆炸与冲击, 2011, 31(1):101-106. Tao Junlin, Qin Libo, Li Kui, et al. Experiment of dynamic compressive behaviour of concrete at high temperature[J]. Explosion and Shock Waves, 2011, 31(1):101-106. (in Chinese)
[11] 刘传雄, 李玉龙, 吴子燕, 等. 高温后混凝土材料的动态压缩力学性能[J]. 土木工程学报, 2011, 44(4):78-83. Liu Chuanxiong, Li Yulong, Wu Ziyan, et al. Dynamic compression behavior of heated concrete[J]. China Civil Engineering Journa, 2011, 44(4):78-83. (in Chinese)
[12] 何远明, 霍静思, 陈柏生, 等. 高温下混凝土SHPB动态力学性能试验研究[J]. 工程力学, 2012, 29(09):200-208. He Yuanming, Huo Jingsi, Chen Bosheng, et al. Impact tests on dynamic behavior of concrete at elevated temperatures[J]. Engineering Mechanics, 2012, 29(9):200-208. (in Chinese)
[13] 许金余, 刘健, 李志武, 等. 高温中与高温后混凝土的冲击力学特性[J]. 建筑材料学报, 2013, 16(1):1-5. Xu Jinyu, Liu Jian, Li Zhiwu, et al. Impact mechanical properties of concrete at and after exposure to high temperature[J]. Journal of Building Materials, 2013, 16(1):1-5. (in Chinese)
[14] 王宇涛, 刘殿书, 李胜林, 等. 高温后混凝土静动态力学性能试验研究[J]. 振动与冲击, 2014, 33(20):16-19. Wang Yutao, Liu Dianshu, Li Shenglin, et al. Static and dynamic mechanical properties of concrete after high temperature treatment[J]. Journal of Vibration and Shock, 2014, 33(20):16-19. (in Chinese)
[15] 李志卫, 肖建庄, 谢青海. 高温后高强混凝土受压动态损伤[J]. 工程力学, 2017, 34(2):78-84. Li Zhiwei, Xiao Jianzhuang, Xie Qinghai. Compressive dynamic damage of high-strength concrete after elevated temperatures[J]. Engineering Mechanics, 2017, 34(2):78-84. (in Chinese)
[16] Du X, Jin L, Ma G. Numerical simulation of dynamic tensile-failure of concrete at meso-scale[J]. International Journal of Impact Engineering, 2014, 66(4):5-17.
[17] 漆雅庆. 火灾下钢筋混凝土构件的非线性有限元分析研究[D]. 广州:华南理工大学, 2011. Qi Yaqing. Nonlinear finite element analysis research of reinforced concrete structure in fire[D]. Guangzhou:South China University of Technology, 2011. (in Chinese)
[18] Grassl P, Pearce C. Mesoscale approach to modeling concrete subjected to thermomechanical loading[J]. Journal of Engineering Mechanics, 2010, 136(3):322-328.
[19] Jin L, Zhang R, Du X. Characterization of the temperature-dependent heat conduction in heterogeneous concretes[J]. Magazine of Concrete Research, 2017, 70(7):325-339.
[20] Comite Euro-International D B. CEB-FIP model code 1990[S]. Trowbridge, Wiltshire, UK:Redwood Books, 1993.
[21] Khan M I. Factors affecting the thermal properties of concrete and applicability of its prediction models[J]. Building & Environment, 2002, 37(6):607-614.
[22] Vosteen H D, Schellschmidt R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock[J]. Physics & Chemistry of the Earth, 2003, 28(9):499-509.
[23] ČErný R, Maděra J, Poděbradská J, et al. The effect of compressive stress on thermal and hygric properties of Portland cement mortar in wide temperature and moisture ranges[J]. Cement & Concrete Research, 2000, 30(8):1267-1276.
[24] 李凌志. 火灾后混凝土材料力学性能与温度、时间的关系[D]. 上海:同济大学, 2006. Li Lingzhi. Research of the relation between mechanics performance of concrete material after fire and temperature & time[D]. Shanghai:Tongji University, 2006. (in Chinese)
[25] Zhai C, Chen L, Xiang H, et al. Experimental and numerical investigation into RC beams subjected to blast after exposure to fire[J]. International Journal of Impact Engineering, 2016, 97:29-45.
[26] 朱合华, 闫治国, 邓涛, 等. 3种岩石高温后力学性质的试验研究[J]. 岩石力学与工程学报, 2006, 25(10):1945-1950. Zhu Hehua, Yan Zhiguo, Deng Tao. et al. Testing study on mechanical properties of tuff, graniteand and breccia after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10):1945-1950. (in Chinese)
[27] 邱一平, 林卓英. 花岗岩样品高温后损伤的试验研究[J]. 岩土力学, 2006, 27(6):1005-1010. Qiu Yiping, Lin Zhuoying. Testing study on damage of granite samples after high temperature[J]. Rock and Soil Mechanics, 2006, 27(6):1005-1010. (in Chinese)
[28] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. ASCE Journal of Engineering Mechanics, 1998, 124(8):892-900.
[29] International Organization for Standardization. ISO834-1 Fire Resistance Test on Elements of Building Construction[S]. 1999.
[30] Zhai C, Chen L, Fang Q, et al. Experimental study of strain rate effects on normal weight concrete after exposure to elevated temperature[J]. Materials & Structures, 2017, 50:40.
[31] 艾晓芹. 混凝土高温后静动态力学性能研究[D]. 西安:长安大学, 2015. Ai Xiaoqin. The static and dynamic mechanical properties of concrete after high temperature[D]. Xi'an:Chang'an University, 2015. (in Chinese)
[32] Ren W, Xu J, Su H. Dynamic compressive behaviour of concrete after exposure to elevated temperatures[J]. Materials & Structures, 2016, 49(8):3321-3334.
[33] Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids and Structures, 2003, 40(2):343-360.
[34] 贾彬. 混凝土高温静动力学特性研究[D]. 重庆:重庆大学, 2011. Jia Bin. Static and dynamic mechanical behavior of concrete at elevated temperature[D]. Chongqing:Chongqing University, 2011. (in Chinese)
[1] 杨参天, 解琳琳, 李爱群, 陈越. 足尺空腔式RC框架柱抗震性能试验研究[J]. 工程力学, 2019, 36(6): 60-69.
[2] 杨勇, 薛亦聪, 于云龙. 预制装配型钢混凝土梁受剪承载力试验与计算方法研究[J]. 工程力学, 2019, 36(6): 92-100.
[3] 王英俊, 梁兴文. 预期损伤部位采用FRC梁柱组合件层间剪力-变形计算模型研究[J]. 工程力学, 2019, 36(6): 79-91.
[4] 张锡治, 李青正, 章少华, 牛四欣, 段东超. 钢-混凝土预制混合梁变形性能研究[J]. 工程力学, 2019, 36(6): 193-201.
[5] 李冬, 金浏, 杜修力, 刘晶波, 张帅, 余文轩. 考虑细观组分影响的混凝土宏观力学性能理论预测模型[J]. 工程力学, 2019, 36(5): 67-75.
[6] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
[7] 郑文忠, 李玲, 张弛. HRB500/HRB600钢筋作纵筋的混凝土框架梁端弯矩调幅试验研究[J]. 工程力学, 2019, 36(5): 76-91,109.
[8] 魏慧, 吴涛, 刘洋, 刘喜. 考虑尺寸效应的深受弯构件受剪模型分析[J]. 工程力学, 2019, 36(5): 130-136.
[9] 肖宇哲, 李易, 陆新征, 任沛琪, 何浩祥. 混凝土梁柱子结构连续倒塌动力效应的试验研究[J]. 工程力学, 2019, 36(5): 44-52.
[10] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[11] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[12] 梁兴文, 汪萍, 徐明雪, 王照耀, 于婧, 李林. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119.
[13] 杜咏, 孙亚凯, 李国强. 预应力钢绞线高温力学性能试验研究[J]. 工程力学, 2019, 36(4): 231-238.
[14] 徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135-146.
[15] 杨勇, 陈阳, 张锦涛, 林冰, 于云龙. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日