工程力学 ›› 2019, Vol. 36 ›› Issue (3): 53-62.doi: 10.6052/j.issn.1000-4750.2018.01.0036

• 土木工程学科 • 上一篇    下一篇

分级屈服型金属阻尼器抗震性能研究

陈云1, 蒋欢军2, 刘涛1, 万志威2, 鲁正2   

  1. 1. 海南大学土木建筑工程学院, 海口 570228;
    2. 同济大学土木工程防灾国家重点实验室, 上海 200092
  • 收稿日期:2018-01-12 修回日期:2018-07-01 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 蒋欢军(1973-),男,浙江人,教授,博士,主要从事工程结构抗震与防灾研究(Email:jhj73@tongji.edu.cn). E-mail:jhj73@tongji.edu.cn
  • 作者简介:陈云(1980-),男,陕西人,副教授,博士,主要从事工程结构抗震与防灾研究(Email:chenyunhappy@163.com);刘涛(1991-),男,陕西人,硕士生,主要从事结构振动控制(Email:tao423589@163.com);万志威(1992-),男,湖北人,硕士生,主要从事结构振动控制(Email:jnwanzhiwei@163.com);鲁正(1982-),男,浙江人,教授,博士,主要从事结构振动控制(Email:luzheng111@tongji.edu.cn)
  • 基金资助:
    国家重点研发计划课题项目(2017YFC1500701);国家自然科学基金项目(51408170);海南省重点研发计划项目(ZDYF2016151);海南省科协青年科技英才创新计划项目(201601)

STUDY ON THE SEISMIC BEHAVIOR OF GRADED YIELDING METAL DAMPERS

CHEN Yun1, JIANG Huan-jun2, LIU Tao1, WAN Zhi-wei2, LU Zheng2   

  1. 1. College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China;
    2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-01-12 Revised:2018-07-01 Online:2019-03-29 Published:2019-03-16

摘要: 提出一种由两个不同尺寸的环形金属阻尼器套在一起形成的分级屈服型金属阻尼器。采用低周往复加载试验对其抗震性能进行了全面研究,揭示该阻尼器的分阶段屈服耗能机理与破坏机制,研究其滞回耗能性能、强度和刚度退化性能以及抗疲劳性能。试验结果表明,该阻尼器不仅有效实现分级屈服耗能,而且变形能力强、滞回环饱满稳定、抗疲劳性能优良。通过参数化有限元分析回归得到环形金属阻尼器的初始刚度修正系数,并提出计算分级屈服型阻尼器三折线骨架曲线性能点的计算公式,通过该计算公式获得的骨架曲线与试验结果吻合较好。同时,也可由阻尼器的性能需求确定其几何尺寸。该文的研究成果初步为该新型分级屈服型金属阻尼器在工程中的应用奠定了基础。

关键词: 金属阻尼器, 分级屈服, 低周往复加载试验, 抗震性能, 数值模拟

Abstract: In this paper a new type of graded yielding metal damper composed of two annular metal dampers with different sizes was proposed. The seismic performance of the new damper was studied by cyclic loading tests. The failure mechanism and energy-dissipation mechanism of the damper were revealed. The hysteretic energy-dissipation behavior, strength and stiffness degradation, and fatigue resistance of the damper were analyzed. The experimental results show that the damper not only achieves graded yielding function effectively, but also possesses large deformation capability, full hysteretic loops and excellent anti-fatigue performance. The modification coefficient of the initial stiffness of the damper was obtained by parametric finite element analysis and regression analysis. The formulas to determine the performance points in the load-deformation skeleton curve were proposed. The calculated skeleton curves agree well with the experimental results. Accordingly, the geometry of the damper can be determined by the performance requirement. The research results of this study can provide technical support for the engineering application of the new metal damper.

Key words: metal damper, graded yielding, low-cycle cyclic loading tests, seismic behavior, numerical simulation

中图分类号: 

  • TU352.1
[1] 李爱群. 工程结构减振控制[M]. 北京:机械工业出版社, 2007:3-5. Li Aiqun. Structural vibration control[M]. Beijing:China Machine Press, 2007:3-5. (in Chinese)
[2] 缪志伟, 宋前恩, 李爱群. 减震设计与抗震设计RC框架结构抗地震倒塌能力对比[J]. 工程力学, 2016, 33(8):24-31. Miao Zhiwei, Song Qianen, Li Aiqun. Comparison of collapse-resistance capacities of RC frames with and without dampers[J]. Engineering Mechanics, 2016, 33(8):24-31. (in Chinese)
[3] 李钢, 李宏男. 基于位移的消能减震结构抗震设计方法[J]. 工程力学, 2007, 24(9):88-94. Li Gang, Li Hongnan. Direct displacement-based design for buildings with passive energy dissipation devices[J]. Engineering Mechanics, 2007, 24(9):88-94. (in Chinese)
[4] 辛亚军, 程树良, 王焕定. 一种钢铅组合耗能器的滞回模型和减震效果研究[J]. 工程力学, 2010, 27(10):74-80. Xin Yajun, Cheng Shuliang, Wang Huanding. Hysteretic model and control effect of a combined steel-lead damper[J]. Engineering Mechanics, 2010, 27(10):74-80. (in Chinese)
[5] Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake resistant structures[J]. Bulletin of NZ Society for Earthquake Engine Annular, 1972, 5(3):63-88.
[6] Whittaker A S, Bertero V V, Thompson C L, et al. Seismic testing of steel plate energy dissipation devices[J]. Earthquake Spectra, 1991, 7(4):563-604.
[7] Tsai K C, Chen H W, Hong C P, et al. Design of steel triangular plate energy absorbers for seismic-resistant construction[J]. Earthquake Spectra, 1993, 9(3):505-528.
[8] 邢书涛, 郭迅. 一种新型软钢阻尼器力学性能和减震效果的研究[J]. 地震工程与工程振动, 2003, 23(6):179-186. Xing Shutao, Guo Xun. Study on mechanical behavior and effectiveness of a new type of mild steel damper[J]. Earthquake Engineering and Engineering Dynamics, 2003, 23(6):179-186. (in Chinese)
[9] 苏宇坤, 潘鹏, 邓开来, 等. 双向地震作用下U形钢阻尼器力学性能研究[J]. 建筑结构学报, 2014, 35(8):44-49. Su Yukun, Pan Peng, Deng Kailai, et al. Mechanical properties of U-shaped steel damper subjected to bi-axial ground motions[J]. Journal of Building Structures, 2014, 35(8):44-49. (in Chinese)
[10] Deng K, Pan P, Wang C. Development of crawler steel damper for bridges[J]. Journal of Constructional Steel Research, 2013, 85:140-150.
[11] 李宏男, 李钢, 李中军, 等. 钢筋混凝土框架结构利用"双功能"软钢阻尼器的抗震设计[J]. 建筑结构学报, 2007, 28(4):36-43. Li Hongnan, Li Gang, Li Zhongjun, et al. Earhquake-resistent design of reinforced concrete frame with metallic dampers of ‘dual functions’[J]. Journal of Building Structures, 2007, 28(4):36-43. (in Chinese)
[12] 徐艳红, 李爱群, 黄镇. 抛物线外形软钢阻尼器试验研究[J]. 建筑结构学报, 2011, 32(12):202-209. Xu Yanhong, Li Aiqun, Huang Zhen. Experimental study of mild steel dampers with parabolic shape[J]. Journal of Building Structures, 2011, 32(12):202-209. (in Chinese)
[13] 邓开来, 潘鹏. 变截面软钢剪切阻尼器试验研究[J]. 工程力学, 2016, 33(5):82-88. Deng Kailai, Pan Peng. Experimental study of steel shear panel dampers with varying cross-sections[J]. Engineering Mechanics, 2016, 33(5):82-88. (in Chinese)
[14] 刘伟庆, 缪卓君, 王曙光, 等. 新型分阶段屈服型软钢阻尼器的试验研究及数值模拟[J]. 振动与冲击, 2016, 35(3):87-92. Liu Weiqing, Miao Zhuojun, Wang Shuguang, et al. Experiments and numerical prediction on a new type of mild steel damper with separable phases yielding[J]. Journal of Vibration and Shock, 2016, 35(3):87-92. (In Chinese)
[15] 李国强, 庞梦德, 孙飞飞, 等. 双阶屈服钢连梁联肢墙的参数设计和布置研究[J]. 建筑钢结构进展, 2017, 19(1):51-60. Li Guoqiang, Pang Mengde, Sun Feifei, et al. Research on the parameter design and location arrangement of two-level yielding steel coupling beams in coupled shear wall structures[J]. Progress in Steel Building Structures, 2017, 19(1):51-60. (in Chinese)
[16] 范圣刚, 丁智霞, 舒赣平, 等. 新型两阶段耗能开孔式低屈服点钢耗能装置试验研究[J]. 东南大学学报:自然科学版, 2016, 46(1):110-117. Fan Shenggang, Ding Zhixia, Shu Ganping, et al. Experimental study on new open-pore two-stage energy dissipation device with low yield point steel[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(1):110-117. (in Chinese)
[17] 陈云, 刘涛, 蒋欢军, 等. 多水准减震分级屈服金属阻尼器:中国, ZL 201621300648.1[P]. 2016-11-30. Chen Yun, Liu Tao, Jiang Huanjun, et al. Metal dampers with multi-level yield characteristics:China, ZL 201621300648.1[P]. 2016-11-30. (in Chinese)
[18] GB/T 228.1-2010, 金属材料拉伸试验第1部分:室温试验方法[S]. 北京:中国标准出版社, 2010. GB/T 228.1-2010, Metallic materials-tensile testingPart1:Method of test at room temperature[S]. Beijing:Standards Press of China, 2010. (in Chinese)
[19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic desgin of buildings[S]. Beijing:China Building Industry Press, 2010. (in Chinese)
[1] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[2] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[3] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[4] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[5] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[6] 钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230,239.
[7] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[8] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
[9] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
[10] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[11] 陈云, 陈超, 蒋欢军, 万志威, 刘涛. O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J]. 工程力学, 2019, 36(1): 119-128.
[12] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[13] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[14] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[15] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日