工程力学 ›› 2019, Vol. 36 ›› Issue (3): 131-138,202.doi: 10.6052/j.issn.1000-4750.2018.01.0020

• 土木工程学科 • 上一篇    下一篇

结构基频对冷却塔风振效应的影响

张军锋1, 朱冰1, 杨军辉1, 葛耀君2, 赵林2   

  1. 1. 郑州大学土木工程学院, 郑州 450001;
    2. 同济大学土木工程防灾国家重点实验室, 上海 200092
  • 收稿日期:2018-01-08 修回日期:2018-07-24 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 张军锋(1983-),男,河南平顶山人,博士生,从事结构和桥梁抗风研究(E-mail:brilliantshine@163.com). E-mail:brilliantshine@163.com
  • 作者简介:朱冰(1995-),男,江西九江人,硕士生,从事结构抗风研究(E-mail:535453402@qq.com);杨军辉(1994-),河南开封人,硕士生,从事结构抗风研究(E-mail:363265313@qq.com);葛耀君(1958-),男,上海人,教授,博士,博导,从事结构和桥梁抗风研究(E-mail:yaojunge@tongji.edu.cn);赵林(1974-),男,黑龙江省牡丹江人,讲师,博士,从事结构和桥梁抗风研究(E-mail:zhaolin@tongji.edu.cn)
  • 基金资助:
    国家自然科学基金项目(51508523)

INFLUENCES OF THE FUNDAMENTAL FREQUENCY ON THE WIND DYNAMIC EFFECTS OF A HYPERBOLIC COOLING TOWER

ZHANG Jun-feng1, ZHU Bing1, YANG Jun-hui1, GE Yao-jun2, ZHAO Lin2   

  1. 1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-01-08 Revised:2018-07-24 Online:2019-03-29 Published:2019-03-16

摘要: 为明确结构基频f0对冷却塔风振效应的影响,以某大型冷却塔为例,在风振响应时程计算和风振效应特征分析的基础上,通过调整材料弹性模量E实现对f0的改变,以单独分析f0对风振效应尤其是共振分量σR的影响,并阐述了该方法的优点。结果表明,根据共振与背景分量σRσB在时域内的分离方法,不管f0如何变化,σRσB之间的耦合分量始终可以忽略。各响应σRf0的降低而增加,并在f0小于0.7 Hz以后急剧增加,但因σB在总脉动响应σT中贡献较高,故σT和阵风响应因子GRF仅在f0小于0.5 Hz以后才有较明显的增加。各响应σRf0的降低而增加的原因在于风谱能量随频率的降低而增加,且结构f0越小其共振参与模态越多。为方便评价共振响应σRf0的变化,提出参数RP=(1/f0×(1/f0-1/2))综合考虑以上两种因素作为σR的评价指标,且各响应的σRRP均呈线性变化。

关键词: 冷却塔, 风振效应, 结构基频, 共振分量, 阵风响应因子

Abstract: Studies were initiated for clear interpretation of the influence of the fundamental frequency, f0, on the wind dynamic effects of hyperbolic cooling towers (HCTs). Based on the preceding wind dynamic calculation in time domain and the features of dynamic effects, a new method was proposed to adjust f0 and brought into the following operation. In this new method, the material elastic modulus E was changed to get different f0's and corresponding wind dynamic effects, especially the resonance component,σR. The advantages of this method are also presented. The results show that the coupling effect between the resonance and background components, σR and σB, obtained in time domain is negligible no matter what value the f0 takes.σR increases with the decrease of f0, especially when f0 is less than 0.7 Hz. However, the total gust response,σT, increases more slowly with the decrease of f0 because the significant contribution of σB and σB does not change with f0. Therefore,σT shows quick increase only if f0 is less than 0.5 Hz. There are two reasons for the increase of σR when f0 decreases: 1) the wind spectrum increases with the decrease of frequency and 2) more resonant modes would be excited. A parameter Rp=(1/f0×(1/f0-1/2)), which could cover the above two reasons, was proposed for convenient evaluation of σR. A linear relationship is found between σR of all responses and the parameter RP.

Key words: cooling towers, wind dynamic effects, fundamental frequency, resonance component, gust response factor

中图分类号: 

  • TU33+2
[1] 张军锋, 朱冰, 葛耀君, 等. 冷却塔风振效应特征及影响因素分析[J]. 振动与冲击, 2018, 37(18):201-208. Zhang Junfeng, Zhu Bing, Ge Yaojun, et al. Features of wind dynamic effects of a hyperboloidal cooling tower and the influence factors[J]. Journal of Vibration and Shock, 2018, 37(18):201-208. (in Chinese)
[2] Ke S T, Ge Y J, Zhao, L. Wind-induced vibration characteristics and parametric analysis of large hyperbolic cooling towers with different feature sizes[J]. Structural Engineering and Mechanics, 2015, 54(5):891-908.
[3] Singh M P, Gupta A K. Gust factors for hyperbolic cooling towers[J]. Journal of the Structural Division, 1976, 102(2):371-386.
[4] 卢文达, 王养琪, 蓬静欣, 等. 双曲冷却塔的阵风响应[J]. 中国电机工程学报, 1982(1):45-61. Lu Wenda, Wang Yangqi, Peng Jingxin, et al. Response of hyperbolic cooling tower to turbulent wind[J]. Proceedings of the CSEE, 1982(1):45-61. (in Chinese)
[5] 张军锋, 葛耀君, 赵林. 冷却塔风振响应时程计算与风振系数分析[J]. 振动与冲击, 2017, 36(3):163-171. Zhang Junfeng, Ge Yaojun, Zhao Lin. Wind induced responses of a hyperboloidal cooling tower in time-domain and the gust effect factor analysis[J]. Journal of Vibration and Shock, 2017, 36(3):163-171. (in Chinese)
[6] 张军锋, 葛耀君, 赵林, 等. 双曲冷却塔表面三维绕流特性及风压相关性研究[J]. 工程力学, 2013, 30(9):234-242. Zhang Junfeng, Ge Yaojun, Zhao Lin, et al. Wind tunnel study on the three dimensional flow and spatial correlation properties of wind loads on hyperboloidal cooling towers[J]. Engineering Mechanics, 2013, 30(9):234-242. (in Chinese)
[7] Noh S Y, Lee S Y. Evaluation of the natural draught cooling tower shell using linearly and non-linearly numerical analysis[J]. Journal of vibroengineering, 2012, 14(3):1011-1020.
[8] 鲍侃袁. 大型双曲冷却塔的风荷载和风致响应理论分析与试验研究[D]. 杭州:浙江大学, 2009. Bao Kanyuan. Theoretical and experimental research on wind load and wind induced response of large hyperbolic cooling towers[D]. Hangzhou:Zhejiang University, 2009. (in Chinese)
[9] Zhang JunFeng, Chen Huai, Ge YaoJun, et al. Effects of stiffening rings on the dynamic properties of hyperboloidal cooling towers[J]. Structural Engineering and Mechanics, 2014, 49(5):619-629.
[10] 张军锋, 葛耀君, 赵林. 双曲冷却塔结构特性新认识[J]. 工程力学, 2013, 30(6):67-76. Zhang Junfeng, Ge Yaojun, Zhao Lin. New perceptions on the structure behavior of hyperboloidal cooling towers[J]. Engineering Mechanics, 2013, 30(6):67-76. (in Chinese)
[11] Busch D, Harte R, Niemann H J. Study of a proposed 200m high natural draught cooling tower at power plant Frimmersdorf/Germany[J]. Eng. Struct., 1998, 20(10), 920-927.
[12] 邹云峰, 牛华伟, 陈政清. 基于完全气动弹性模型的冷却塔风致响应风洞试验研究[J]. 建筑结构学报, 2013, 34(6):60-67. Zou Yunfeng, Niu Huawei, Chen Zhengqing. Wind tunnel test on wind-induced response of cooling tower based on full aero-elastic model[J]. Journal of Building Structures, 2013, 34(6):60-67. (in Chinese)
[13] 赵海, 白国良, 徐亚洲, 等. 初始缺陷对超大型双曲冷却塔极限承载力的影响[J]. 西安建筑科技大学学报(自然科学版), 2011, 43(6):777-783. Zhao Hai, Bai Guoliang, Xu Yazhou, et al. The influence of initial imperfections on the ultimate bearing capacity of super-large hyperbolic cooling tower[J]. Journal of Xi'an University of Architecture and Technique (Natural Science Edition), 2011, 43(6):777-783. (in Chinese)
[14] 张军锋, 丁玉玺, 陈淮. 冷却塔塔筒荷载效应和简化设计方法-配筋计算流程的简化[J]. 防灾减灾工程学报, 2018, 38(3):549-555. Zhang Junfeng, Ding Yuxi, Chen Huai. Load effects and load effects combination of hyperbolidial cooling tower shell-A simplified combination method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3):549-555. (in Chinese)
[15] Davenport A G. Gust loading factors[J]. Journal of the Structural Division, 1967, 93(3):11-34.
[16] Clough R W, Penzien J. Dynamics of structures[M]. 3rd ed. Computers & Structures, 2003.
[17] VGB-Guideline:structural design of cooling towertechnical guideline for the structural design, computation and execution of cooling towers (VGB-R 610Ue)[S]. Essen:BTR Bautechnik bei Kühltürmen, 2005.
[18] BS 4485 Part 4. Code of practice for structural design and construction-water cooling towers[S]. London:British Standard Institution, 1996.
[19] Armitt J. Wind loading on cooling towers[J]. Journal of the Structural Division, 1980, 106(3):623-641.
[20] Niemann H J. Wind effects on cooling-tower shells[J]. Journal of the Structural Division, 1980, 106(3):643-661.
[21] Zhou Y, Kijewski T, Kareem A. Along-wind load effects on tall buildings:comparative study of major international codes and standards[J]. Journal of Structural Engineering, 2002, 128(6):788-796.
[1] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[2] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[3] 董国朝, 张建仁, 蔡春声, 韩艳. 侧风对超大型冷却塔内空气动力场的影响研究[J]. 工程力学, 2018, 35(2): 76-83.
[4] 田凯强, 秦其伟, 郑云飞, 刘庆宽, 刘小兵, 马文勇. 大型冷却塔表面风压分布特性的试验研究[J]. 工程力学, 2017, 34(增刊): 269-272.
[5] 余玮, 柯世堂. 考虑风热耦合作用特大型冷却塔内吸力及流场作用机理研究[J]. 工程力学, 2017, 34(12): 112-119,142.
[6] 展艳艳, 赵林, 梁誉文, 操金鑫, 葛耀君. 大型冷却塔群塔组合(六塔双列)风致干扰准则综合评价[J]. 工程力学, 2017, 34(11): 66-76.
[7] 张军锋, 葛耀君, 赵林. 群塔布置对冷却塔整体风荷载和风致响应的不同干扰效应[J]. 工程力学, 2016, 33(8): 15-23,44.
[8] 李玉学, 杨庆山, 田玉基, 朱英磊. 大跨屋盖结构多目标等效静力风荷载[J]. 工程力学, 2016, 33(6): 85-92.
[9] 董国朝, 张建仁, 蔡春声, 韩艳. 考虑内部构件影响的超大型冷却塔内压系数研究[J]. 工程力学, 2016, 33(4): 77-83.
[10] 李寿科, 李寿英, 方湘璐, 孙洪鑫, 李红利. 随机风荷载作用下的结构风致响应精细化计算[J]. 工程力学, 2015, 32(增刊): 111-115.
[11] 张军锋, 葛耀君, 赵林, 柯世堂. 双曲冷却塔子午线型对结构受力性能的影响[J]. 工程力学, 2014, 31(3): 187-196.
[12] 张军锋,葛耀君,赵林,柯世堂. 双曲冷却塔表面三维绕流特性及风压相关性研究[J]. 工程力学, 2013, 30(9): 234-242.
[13] 张军锋,葛耀君,赵林. 双曲冷却塔结构特性新认识[J]. 工程力学, 2013, 30(6): 67-76.
[14] 沈国辉,王宁博,楼文娟,孙炳楠. 渡桥电厂冷却塔倒塌的塔型因素分析[J]. 工程力学, 2012, 29(8): 123-128.
[15] 徐亚洲, 白国良. 考虑混凝土材料变异性的超大型冷却塔随机屈曲承载力分析[J]. 工程力学, 2012, 29(8): 208-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日