工程力学 ›› 2019, Vol. 36 ›› Issue (3): 240-246,256.doi: 10.6052/j.issn.1000-4750.2018.01.0012

• 其他工程学科 • 上一篇    下一篇

软式平流层飞艇气弹模型相似参数分析

李天娥1, 孙晓颖2, 武岳2, 王长国3   

  1. 1. 太原理工大学, 建筑与土木工程学院, 太原 030024;
    2. 哈尔滨工业大学, 结构工程灾变与控制教育部重点试验室, 哈尔滨 150090;
    3. 哈尔滨工业大学, 复合材料与结构研究所, 哈尔滨 150080
  • 收稿日期:2018-01-04 修回日期:2018-09-18 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 孙晓颖(1975-),女,黑龙江人,副教授,博士,硕导,主要从事大跨度空间结构设计理论研究(E-mail:sxy_hit@163.com). E-mail:sxy_hit@163.com
  • 作者简介:李天娥(1987-),女,山西人,讲师,主要从事大跨度空间结构设计理论研究(E-mail:woshitiane@126.com);武岳(1972-),男,黑龙江人,教授,博士,博导,主要从事大跨度空间结构设计理论研究(E-mail:wuyue_2000@163.com);王长国(1979-),男,辽宁人,教授,博士,博导,主要从事薄膜结构力学、大型薄膜结构稳定性研究(E-mail:wangcg@hit.edu.cn)
  • 基金资助:
    国家自然科学基金项目(51678192,11572099);航空科学基金项目(2016ZA77001)

SIMILARITY PARAMETER ANALYSIS OF AEROELASTIC MODEL FOR NON-RIGID STRATOSPHERIC AIRSHIP

LI Tian-e1, SUN Xiao-ying2, WU Yue2, WANG Chang-guo3   

  1. 1. College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China;
    3. Center of Composite Material and Structure, Harbin Institute of Technology, Harbin 150080, China
  • Received:2018-01-04 Revised:2018-09-18 Online:2019-03-29 Published:2019-03-16

摘要: 软式平流层飞艇具有较大的尺寸,基于风洞试验探讨其气弹响应特性时,需要缩比模型取代全尺寸模型。缩比模型的试验结果能否准确地预测原型结构的位移响应,与相似性设计直接相关。该文以设定的某软式平流层飞艇为原型对象,基于量纲分析法推导了模型的相似准则;建立软式平流层飞艇的有限元模型,对不同相似比对应的缩比模型进行了自振及风振响应分析,获得对应的振动频率与位移响应;统计确定了各相似准则对结构振动频率及位移响应的影响程度;对影响程度较大且无法满足相似条件的偏差进行了评估,且给出相应的补偿修正。结果表明:风速偏差的影响可以忽略;蒙皮面密度对位移响应的影响可以忽略;蒙皮张拉刚度及压差的相似偏差,对振动频率及位移响应都有较大的影响。

关键词: 软式平流层飞艇, 气弹模型, 相似性, 参数分析, 补偿修正

Abstract: For the wind tunnel tests to investigate the aeroelastic characteristics of non-rigid stratospheric airships, scale models are needed to replace the full-scale model due to its large size. Whether the test results of the scale models can accurately predict the displacement response of the prototype structure is directly correlative to the similarity design. In this paper, a non-rigid stratospheric airship was taken as the prototype object and the similarity criterions of the model were deduced based on a dimensional analysis. The finite element model of the non-rigid stratospheric airship was established, and the natural vibration and wind-induced responses of scale models with different similar ratios were analyzed. The corresponding vibrational frequency and displacement response were obtained. The influence degrees of each similarity criterion on vibrational frequency and displacement response were statistically determined. The similarity deviations that do not meet the similarity requirements and have a greater influence degree were evaluated, and the corresponding compensation corrections were obtained. The study demonstrates that the similar deviation of wind velocity can be ignored. The similar deviation of membrane surface density on the displacement response can be ignored. The similar deviations of membrane tensile stiffness and differential pressure appreciably affect the vibrational frequency and displacement response.

Key words: non-rigid stratospheric airship, aeroelastic model, similarity, parameter analysis, compensation correction

中图分类号: 

  • V274
[1] Liao L, Pasternak I. Finite element analysis in novel aerostructure design[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, CA, USA:AIAA, 2009:1-12.
[2] 李天娥, 孙晓颖, 张中昱, 等. 平流层飞艇气动阻力的数值模拟及公式拟合[J]. 工程力学, 2017, 34(8):249-256. Li Tiane, Sun Xiaoying, Zhang Zhongyu, et al. Numerical simulation and formula fitting of aerodynamic drag force of stratosphere airship[J]. Engineering Mechanics, 2017, 34(8):249-256. (in Chinese)
[3] 仇翯辰, 邱志平. 平流层飞艇充气柔性膜结构的区间不确定优化[J]. 工程力学, 2015, 32(4):234-243. Qiu Hechen, Qiu Zhiping. Interval uncertainty optimization of airship's air-supported flexible membrane structure[J]. Engineering Mechanics, 2015, 32(4):234-243. (in Chinese)
[4] Khoury G A, Gillett J D. Airship technology[M]. Cambridge:Cambridge University Press, 1999:181.
[5] 孙晓颖, 李天娥, 陆正争, 等. 平流层飞艇的多目标优化与决策[J]. 工程力学, 2015, 32(6):243-250. Sun Xiaoying, Li Tiane, Lu Zhengzheng, et al. Multi-objective optimization and decision making of stratosphere airships[J]. Engineering Mechanics, 2015, 32(6):243-250. (in Chinese)
[6] Bessert N, Frederich O. Nonlinear airship aeroelasticity[J]. Journal of Fluids & Structures, 2005, 21(8):731-742.
[7] Burgess C P. Airship design[M]. New York:The Ronald Press Company, 1927.
[8] Li Y W, Nahon M, Sharf I. Airship dynamics modeling:A literature review[J]. Progress in Aerospace Sciences, 2011, 47(3):217-239.
[9] WU X C, Wang Y W, Huang C G, et al. Experiment and numerical simulation on the characteristics of fluid-structure interactions of non-rigid airships[J]. Theoretical and Applied Mechanics Letters, 2015(5):258-261.
[10] 吴小翠, 王一伟, 黄晨光, 等. 刚度构型对飞艇定常流固耦合特性的影响研究[J]. 工程力学, 2016, 33(2):34-40. Wu Xiaocui, Wang Yiwei, Huang Chenguang, et al. Effects of stiffness on the characteristics of steady fluid-structure interactions of an airship[J]. Engineering Mechanics, 2016, 33(2):34-40. (in Chinese)
[11] 周利霖, 唐国金. 大型飞艇缩比模型设计方法研究[C]//第三届高分辨率对地观测学术年会. 北京, 2014:1-14. Zhou Lilin, Tang Guojin. Design method of sale model for large airship[C]//3rd China High Resolution Earth Observation Conference. Beijing, 2014:1-14. (in Chinese)
[12] 田中伟, 周睿, 吴子牛. 飞艇相似准则研究[C]//2008年中国浮空器大会. 长沙, 2008:84-88. Tian Zhongwei, Zhou Rui, Wu Ziniu. Similarity laws of airships[C]//2008 China Aerostats Assembly. Changsha, 2008:84-88. (in Chinese)
[13] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. Li Hao. Study on the similarity criteria and simulation method of the wind tunnel based virtual fight testing[D]. Mianyang:China Aerodynamics Research and Development Center, 2012. (in Chinese)
[14] 陈昭庆. 张拉膜结构气弹失稳机理研究[D]. 哈尔滨:哈尔滨工业大学, 2015. Chen Zhaoqing. Investigation of aeroelastic instability mechanism of tensioned membrane structures[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
[15] 周凡. 船体极限强度试验相似模型设计研究[D]. 武汉:武汉理工大学, 2014. Zhou Fan. Research on the design method of hull scaled model in ultimate strength test[D]. Wuhan:Wuhan University of Technology, 2014. (in Chinese)
[16] Irwin H P, Wardlaw R L. A wind tunnel investigation of a retractable fabric roof for the Montreal Olympic Stadium[J]. Wind Engineering, 1980, 2:925-938.
[17] 韩志惠. 张拉膜结构气弹模型风洞试验及参数识别方法研究[D]. 上海:同济大学, 2012. Han Zhihui. Research on aeroelastic model wind tunnel test and modal parameter identification of tensioned membrane structure[D]. Shanghai:Tongji University, 2012. (in Chinese)
[18] Forster B, Chilton J. Introduction[European design guide for tensile surface structures]. In:European design guide for tensile surface structures[M]. Brussels:Tensinet, 2004:17-24.
[19] 周丽娜, 由小川, Pierre V, 等. 一种飞艇蒙皮材料的力学性能试验研究[C]//2010力学与工程应用学术研讨会论文集. 上海:2010:1-11. Zhou Lina, You Xiaochuan, Pierre V, et al. Experiment research for a balloon envelop material[C]//2010 Seminars on Mechanics and Engineering Applications. Shanghai:2010:1-11. (in Chinese)
[20] 甘萍. 充气囊体结构在吊挂荷载下变形性能实验研究[D]. 上海:上海交通大学, 2012. Gan Ping. Experiment research on deformation behaviour of inflated membrane structure under suspending loading[D]. Shanghai:Shanghai Jiao Tong University, 2012. (in Chinese)
[21] Omari k E, Schall E, Koobus B, et al. Aeroelastic coupling between a low mach inviscid flow and a flexible generic airship[R]. Sophia Antipolis:HAL-INRIA, 2006.
[22] 于肖宇, 张继革, 顾卫国, 等. 薄壁圆筒结构附加质量的实验研究[J]. 水动力学研究与进展, 2010, 25(5):655-659. Yu Xiaoyu, Zhang Jige, Gu Weiguo, et al. Experimental study of added mass of the thin-walled cylinder structure[J]. Chinese Journal of Hydrodynamics, 2010, 25(5):655-659. (in Chinese)
[23] 陈宇峰, 陈务军, 何艳丽, 等. 柔性飞艇主气囊干湿模态分析与影响因素[J]. 上海交通大学学报, 2014, 48(2):234-238. Chen Yufeng, Chen Wujun, He Yanli, et al. Dry and wet model analysis and evaluation of influencing factors for flexible airship envelop[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2):234-238. (in Chinese)
[24] Katagiri J, Ohkuma T, Marukawa H. Analytical method for coupled across-wind and torsional wind responses with motion-induced wind forces[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(12-15):1795-1805.
[25] Sun X Y, Li T E, Lin G C, et al. A study on the aerodynamic characteristics of a stratospheric airship in its entire flight envelope[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 232(5):902-921.
[1] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
[2] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[3] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[4] 陈明, 王启. 内填钢板墙双肢冷轧C型钢框架抗震性能[J]. 工程力学, 2018, 35(12): 175-184.
[5] 王庆利, 牛献军, 冯立明. 圆CFRP-钢管混凝土压弯构件滞回性能的参数分析与恢复力模型[J]. 工程力学, 2017, 34(增刊): 159-166.
[6] 马昕煦, 陈以一. 支方主圆T形相贯节点轴压承载力计算公式[J]. 工程力学, 2017, 34(5): 163-170.
[7] 刘慕广, 王树彬, 谢壮宁, 石碧青. 基于位移测量的输电塔等效静风荷载研究[J]. 工程力学, 2017, 34(4): 160-166.
[8] 王磊, 秦本东, 梁枢果, 邹良浩. 超高层建筑横风向气动刚度研究[J]. 工程力学, 2017, 34(11): 135-144.
[9] 马越, 杨应华. 热贮料作用下浅圆筒仓温度效应研究[J]. 工程力学, 2017, 34(10): 98-105.
[10] 王磊, 梁枢果, 张振华, 王述良, 邹良浩, 汤怀强. 超高层建筑横风向气动阻尼比评估方法研究[J]. 工程力学, 2017, 34(1): 145-153.
[11] 张有佳, 李小军. 钢板混凝土组合墙轴压受力性能有限元分析[J]. 工程力学, 2016, 33(8): 84-92.
[12] 罗致, 李建中, 严搏. 山区高墩连续刚构桥墩梁相对位移控制研究[J]. 工程力学, 2016, 33(1): 148-156.
[13] 韩祎, 王景玄, 王文达. 内配型钢方钢管混凝土偏压构件受火全过程数值模拟[J]. 工程力学, 2015, 32(增刊): 60-65,90.
[14] 史艳莉, 车向龙, 王景玄. 内配工字型钢的矩形钢管混凝土双向偏压构件参数分析[J]. 工程力学, 2015, 32(增刊): 254-260.
[15] 欧阳煜,卞海涛,杨峥. FRP布加固具有中心裂纹板条的断裂疲劳性能[J]. 工程力学, 2015, 32(3): 158-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日