工程力学 ›› 2019, Vol. 36 ›› Issue (3): 71-78.doi: 10.6052/j.issn.1000-4750.2018.01.0008

• 土木工程学科 • 上一篇    下一篇

非线性振型结构HFFB试验模态力计算方法及不确定性分析

梁洪超1, 楼文娟1, 丁浩2, 卞荣3   

  1. 1. 浙江大学结构工程研究所, 浙江, 杭州 310058;
    2. 浙江省建筑设计研究院, 浙江, 杭州 310006;
    3. 国网浙江省电力公司经济技术研究院, 浙江, 杭州 310000
  • 收稿日期:2018-01-04 修回日期:2018-07-29 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 楼文娟(1963-),女,绍兴人,教授,博士,主要从事结构风工程研究(E-mail:louwj@zju.edu.cn). E-mail:louwj@zju.edu.cn
  • 作者简介:梁洪超(1991-),男,绍兴人,博士生,主要从事结构风工程研究(E-mail:lianghczju@126.com);丁浩(1971-),男,杭州人,教授级高工,学士,第二建筑设计院结构所所长,主要从事结构设计(E-mail:956267561@qq.com);卞荣(1970-),男,上虞人,高工,硕士,国网浙江经研院设计中心副主任,主要从事输电线路研究(E-mail:bianrong1@163.com)
  • 基金资助:
    国家自然科学基金项目(51378468,51678525);国网科技项目(5211JY17000M)

GENERALIZED FORCE CALCULATION METHOD AND UNCERTAINTY ANALYSIS OF NONLINEAR MODE STRUCTURE IN HFFB TESTS

LIANG Hong-chao1, LOU Wen-juan1, DING Hao2, BIAN Rong3   

  1. 1. Institute of Structural Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China;
    2. Zhejiang Province Institute of Architectural Design and Research, Hangzhou, Zhejiang 310006, China;
    3. State Grid Zhejiang Economic Research Institute, Hangzhou, Zhejiang 310000, China
  • Received:2018-01-04 Revised:2018-07-29 Online:2019-03-29 Published:2019-03-16

摘要: 基于高频测力天平风洞试验对非线性振型结构的风致响应提出了改进的评估方法。假设结构风荷载沿高度的分布与阵风风压分布相同,采用结构真实振型计算风荷载模态力。推导了高耸结构风荷载模态力及风致响应计算公式,可以考虑结构多阶真实振型,从而使高频测力天平方法可更为准确地评估非线性振型结构的风致响应及等效静力风荷载。对某一质量、刚度有突变的高耸结构进行了高频测力天平风洞试验,与现有的线性化振型法进行对比,结果表明在弱非线性振型下,线性化振型法得到的加速度响应较层荷载假设方法偏大约40%。研究了层荷载分布的不确定性对计算加速度响应结果的影响,结果表明在阵风剖面层荷载的假设下,荷载分布的不确定性对结构最大加速度响应的影响很小,验证了本文方法的适用性。

关键词: 结构工程, 风工程, 高频测力天平, 风致响应, 高耸结构, 非线性振型, 风洞试验, 模态力, 输电塔

Abstract: Based on the high-frequency-force-balance test, an improved method for evaluating wind-induced response of nonlinear mode-shape structures is proposed. The vertical distribution of wind load is assumed to be the same with gust wind pressure, then real mode shapes are used to calculate the generalized wind forces. The computational formulas of generalized wind forces and wind-induced responses are derived, and the higher modes can be considered, so that the high-frequency-force-balance method can accurately evaluate the wind-induced responses and equivalent static wind loads of nonlinear mode shape structures. A high-frequency-force-balance test of a tall structure with changes in mass and stiffness is conducted. Comparing the proposed method with linear mode shape method, the computational error of the linear mode assumption is analyzed, and it shows that the acceleration response of a nonlinear mode shape structure can be 40% overestimated applying the linear mode shape method. The influence of the load distribution uncertainty is studied. The results show that under the assumption of gust wind profile load, the load distribution uncertainty has little effect on the maximum acceleration response, which proves the applicability of the proposed method.

Key words: structural engineering, wind engineering, HFFB, wind-induced response, high-rise structure, nonlinear mode shape, wind tunnel test, generalized force, transmission tower

中图分类号: 

  • TU311.3
[1] Tschanz T, Davenport A G. The base balance technique for the determination of dynamic wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 13(1/2/3):429-439.
[2] Chen X, Kwon D, Kareem A. High-frequency force balance technique for tall buildings:A critical review and some new insights[J]. Wind and Structures, 2014, 18(4):391-422.
[3] 谢壮宁, 石碧青, 倪振华, 等. 深圳京基金融中心气动抗风措施试验研究[J]. 建筑结构学报, 2010, 31(10):1-7. Xie Zhuangning, Shi Biqing, Ni Zhenhua, et al. Experimental study on reduction of wind loads on the Shenzhen King key Financial Tower by aerodynamic strategy[J]. Journal of Building Structures, 2010, 31(10):1-7. (in Chinese)
[4] 石碧青, 谢壮宁, 倪振华. 用高频底座力天平研究广州西塔的风效应[J]. 土木工程学报, 2008, 41(2):42-48. Shi Biqing, Xie Zhuangning, Ni Zhenhua. Study on wind effects of Guangzhou West Tower using high-frequencyforce-balance method[J]. China Civil Engineering Journal, 2008, 41(2):42-48. (in Chinese)
[5] 顾明, 周印, 张锋, 等. 用高频动态天平方法研究金茂大厦的动力风荷载和风振响应[J]. 建筑结构学报, 2000, 21(4):55-61. Gu Ming, Zhou Yin, Zhang Feng, et al. Study on wind loads and wind-induced vibration of the Jin Mao building using high-frequency-force-balance method[J]. Journal of Building Structures, 2000, 21(4):55-61. (in Chinese)
[6] 李正农, 李兵, 程杰, 等. 相邻柜体干扰对煤气柜风致基底剪力的影响[J]. 工程力学, 2017, 34(11):102-108. Li Zhengnong, Li Bing, Cheng Jie, et al. Influence of adjacent gas holder interference on wind-induced base shear of gas holder[J]. Engineering Mechanics, 2017, 34(11):102-108. (in Chinese)
[7] 杨风利. 角钢输电铁塔横担角度风荷载系数取值研究[J]. 工程力学, 2017, 34(4):150-159. Yang Fengli. Study on skewed wind load factor on cross-arms of angle steel transmission towers under skewed wind[J]. Engineering Mechanics, 2017, 34(4):150-159. (in Chinese)
[8] Holmes J D. Mode shape corrections for dynamicresponse to wind[J]. Engineering Structures, 1987, 9(3):210-212.
[9] Xu Y L, Kwok K C S. Mode shape corrections for wind tunnel tests of tall buildings[J]. Engineering Structures, 1993, 15(5):387-392.
[10] Chen X, Kareem A. Dynamic wind effects on buildings with 3D coupled modes:application of high frequency force balance measurements[J]. Journal of Engineering Mechanic, 2005, 131(11):1115-1125.
[11] Chen X, Kareem A. Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes[J]. Journal of Structural Engineering, 2005, 131(7):1071-1082.
[12] Lam K M, Li A. Mode shape correction for wind-induced dynamic responses of tall buildings using time-domain computation and wind tunnel tests[J]. Journal of Sound and Vibration, 2009, 322(4/5):740-755.
[13] Xie J, Irwin P A. Application of the force balance technique to a building complex[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77-78:579-590.
[14] Xie J, Garber J. HFFB technique and its validation studies[J]. Wind and Structures, 2014, 18(18):375-389.
[15] Chen X Z, Kareem A. Validity of wind load distribution based on high frequency force balance measurements[J]. Journal of Structural Engineering-ASCE, 2005, 131(6):984-987.
[16] Holmes J D, Tse T K T. International high-frequency base balance benchmark study[J]. Wind and Structures. 2014, 18(4):457-471.
[17] Huang M F, Li Q, Lou W. Model-selection uncertainty quantifications in HFFB dynamic analyses of a complex tall building[J]. Journal of Engineering Mechanics, 2018, 144(6):04018040.
[18] Cui W, Caracoglia L. Examination of experimental variability in HFFB testing of a tall building under multi-directional winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171:34-49.
[19] Yip D. A new force balance data analysis method for wind response predictions of tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55:457-471.
[20] GB 50009-2012, 建筑结构荷载规范[S]. 北京:中国住房和城乡建设部, 2012. GB 50009-2012, Load code for design of building structures[S]. Beijing:China's Ministry of Housing and Urban-Rural Construction, 2012. (in Chinese)
[21] 邹良浩, 梁枢果. 半刚性模型风洞试验荷载谱的处理方法[J]. 实验流体力学, 2007, 21(3):76-81. Zou Lianghao, Liang Shuguo. A method to evaluate wind force spectra of semi-rigid model in wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):76-81. (in Chinese)
[22] 吴承卉, 黄铭枫, 姜雄, 等. 基于半刚性模型风洞试验的锅炉塔架风振分析[J]. 空气动力学学报, 2015, 33(3):353-359. Wu Chenghui, Huang Mingfeng, Jiang Xiong, et al. Wind-induced vibration analysis of lattice-truss tower installed with a boiler based on semi-rigid model test[J]. Acta Aerodynamica Sinica, 2015, 33(3):353-359. (in Chinese)
[23] Herrador M A, Asuero A G, Gonzalez A G. Estimation of the uncertainty of indirect measurements from the propagation of distributions by using the Monte-Carlo method:An overview[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 79(1-2):115-122.
[1] 张景钰, 张明金, 李永乐, 房忱, 向活跃. 高速铁路路堤-路堑过渡段复杂风场和列车气动效应风洞试验研究[J]. 工程力学, 2019, 36(1): 80-87.
[2] 姜志琳, 赵均海, 吕美彤, 张磊. 基于线性强化模型的双层厚壁圆筒极限内压统一解[J]. 工程力学, 2018, 35(S1): 6-12.
[3] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[4] 武启剑, 王臣, 支旭东. 玻璃纤维增强短钢管构件轴压试验和破坏模式仿真研究[J]. 工程力学, 2018, 35(8): 184-191.
[5] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[6] 李尚斌, 林永峰, 樊枫. 倾转旋翼气动特性风洞试验与数值模拟研究[J]. 工程力学, 2018, 35(6): 249-256.
[7] 赵林, 展艳艳, 陈旭, 葛耀君. 基于配筋率包络指标的冷却塔群塔风致干扰准则[J]. 工程力学, 2018, 35(5): 65-74.
[8] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[9] 罗凯文, 杨易, 谢壮宁. 基于k-ε模型模拟平衡态大气边界层的比较研究[J]. 工程力学, 2018, 35(2): 21-29.
[10] 王骑, 李郁林, 李志国, 廖海黎. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10): 10-16.
[11] 胡伟成, 杨庆山, 张建. 多国规范山地风速地形修正系数对比研究[J]. 工程力学, 2018, 35(10): 203-211.
[12] 李斌, 文昊天, 宫兆宇. 风力发电机塔筒风致响应分析与风振控制研究[J]. 工程力学, 2017, 34(增刊): 134-138.
[13] 刘娇, 刘敬敏, 余波, 杨绿峰. 工程结构体系可靠度分析的最新研究进展[J]. 工程力学, 2017, 34(增刊): 31-37.
[14] 王晓江, 郑云飞, 刘庆宽, 刘小兵, 马文勇. 四心圆煤棚风荷载分布规律的试验研究[J]. 工程力学, 2017, 34(增刊): 59-62.
[15] 岳光强, 马文勇, 刘庆宽, 刘小兵. 风向角对方形断面细长结构气动力特性的影响[J]. 工程力学, 2017, 34(增刊): 5-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日