工程力学 ›› 2019, Vol. 36 ›› Issue (3): 247-256.doi: 10.6052/j.issn.1000-4750.2018.01.0002

• 其他工程学科 • 上一篇    

周期性多材料结构稳态热传导拓扑优化设计

赵清海1,2, 张洪信2, 华青松1,2, 蒋荣超2, 袁林2   

  1. 1. 青岛大学电动汽车智能化动力集成技术国家地方联合工程研究中心, 青岛 266071;
    2. 青岛大学机电工程学院, 青岛 266071
  • 收稿日期:2018-01-02 修回日期:2018-09-10 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 张洪信(1969-),男,山东人,教授,博士,主要从事新型动力传动系统研究(E-mail:qduzhx@163.com). E-mail:qduzhx@163.com
  • 作者简介:赵清海(1985-),男,山东人,讲师,博士,主要从事不确定性分析与汽车轻量化研究(E-mail:zqhbit@163.com);华青松(1975-),男,浙江人,教授,博士,博导,主要从事新型动力储能系统研究(E-mail:q.hua@hotmail.com);蒋荣超(1985-),男,山东人,讲师,博士,主要从事多学科优化设计与轻量化研究(E-mail:jrch123@126.com);袁林(1994-),男,山东人,硕士生,主要从事电动汽车结构轻量化设计(E-mail:2420648318@qq.com)
  • 基金资助:
    国家自然科学基金项目(51705268);山东省自然科学基金项目(ZR2016EEB20);中国博士后科学基金面上项目(2017M612191)

MULTI-MATERIAL TOPOLOGY OPTIMIZATION OF STEADY-STATE HEAT CONDUCTION STRUCTURE UNDER PERIODIC CONSTRAINT

ZHAO Qing-hai1,2, ZHANG Hong-xin2, HUA Qing-song1,2, JIANG Rong-chao2, YUAN Lin2   

  1. 1. National and Local Union Engineering Research Center of Electric Vehicle Intelligent Power Integration Technology, Qingdao University, Qingdao 266071, China;
    2. Mechanical and Electrical Engineering College, Qingdao University, Qingdao 266071, China
  • Received:2018-01-02 Revised:2018-09-10 Online:2019-03-29 Published:2019-03-16

摘要: 提出一种考虑周期性约束的多材料结构稳态热传导拓扑优化设计方法。针对多材料结构,提出基于有序有理近似材料属性模型(ordered rational approximation of material properties,Ordered-RAMP)的多材料插值模型。以结构散热弱度最小化为目标函数,体积为约束条件,将设计区域划分为有限个相同的子多材料区域。通过重新分配单元散热弱度基值,实现周期性几何约束,借助优化准则法推导设计变量的迭代格式。通过典型2D与3D数值算例,分析不同子区域个数对宏观结构与微观子区域多材料拓扑构型的影响。结果表明:所提方法可实现面向多材料结构的周期性微观构型设计,且各材料分布合理边界清晰,具有良好的稳健性;当子区域个数不同时,均可得到具有周期性的拓扑构型,且所获拓扑形式具有差异性。

关键词: 多材料结构, 周期性, 拓扑优化, 稳态热传导, 散热弱度

Abstract: A multi-material topology optimization design for periodic constraint steady-state heat conduction is proposed. The ordered rational approximation of material properties (Ordered-RAMP) based a multi-material interpolation model is constructed. The design domain is divided into finite identical multi-subregion material structures, involving the minimum thermal compliance and volume constraint condition. By redistributing the element base value of the thermal compliance, the periodic constraint is implemented, and the iterative format of the design variables is derived by an optimization criterion method. Through 2D and 3D examples, the effects of the number of subregions are researched on the optimal multi-material topologies of the macroscopic and microscopic sburegions. The results show that: the proposed method excellently realizes the robustness design of the periodic microstructure of a multi-material structure with a reasonable distribution and a distinct boundary; and the topological configuration of periodic structures exhibits different characteristics to some extent.

Key words: multi-material structure, periodic, topology optimization, steady-state heat conduction, thermal compliance

中图分类号: 

  • O551.3
[1] Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224.
[2] Sigmund O. Materials with prescribed constitutive parameters-an inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17):2313-2329.
[3] Sigmund O. Tailoring materials with prescribed elastic properties[J]. Mechanics of Materials, 1995, 20(4):351-368.
[4] 程耿东, 刘书田. 单向纤维复合材料导热性预测[J]. 复合材料学报, 1996, 13(1):78-85. Cheng Gengdong, Liu Shutian. Prediction of thermal conductivity of unidirectional fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 1996, 13(1):78-85. (in Chinese)
[5] Kalidindi S R, Houskanp M, Adams B L. Microstructure engineering in design[R]. Atlanta:AIAA, 2002-5567, 2002:1509-1518.
[6] 孙士平, 张卫红. 多相材料微结构多目标拓扑优化设计[J]. 力学学报, 2006, 38(5):633-638. Sun Shiping, Zhang Weihong. Multiple objective topology optimal design of multiphase microstructures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5):633-638. (in Chinese)
[7] 杜义贤, 李涵钊, 田启华, 等. 基于能量均匀化的高剪切强度周期性点阵结构拓扑优化[J]. 机械工程学报, 2017, 53(18):152-160. Du Yixian, Li Hanzhao, Tian Qihua, et al. Topology optimization of periodic lattice structure with high shear strength using energy-based homogenization[J]. Chinese Journal of Mechanical Engineering, 2017, 53(18):152-160. (in Chinese)
[8] Faure A, Michailidis G, Parry G, et al. Design of thermoelastic multi-material structures with graded interfaces using topology optimization[J]. Structural and Multidisciplinary Optimization, 2017, 56(4):823-837.
[9] Asadpoure A, Tootkaboni M, Valdevit L. Topology optimization of multiphase architected materials for energy dissipation[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 325(10):314-329.
[10] Zhang W H, Sun S P. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9):993-1011.
[11] Long K, Han D, Gu X G. Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson's ratios for maximum frequency[J]. Computational Materials Science, 2017, 129(3):194-201.
[12] Chen W J, Tong L Y, Liu S T. Concurrent topology design of structure and material using a two-scale topology optimization[J]. Computers and Structures, 2017, 178(1):119-128.
[13] Waseem A, Temizer I, Kato J, et al. Micro-texture design and optimization in hydrodynamic lubrication via two-scale analysis[J]. Structural and Multidisciplinary Optimization, 2017, 56(2):227-248.
[14] Xia L, Breitkopf P. Recent advances on topology optimization of multiscale nonlinear structures[J]. Archives of Computational Methods in Engineering, 2017, 24(2):227-249.
[15] Huang X, Xie Y M. Optimal design of periodic structures using evolutionary topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36(6):597-606.
[16] 焦洪宇, 周奇才, 李文军, 等. 基于变密度法的周期性拓扑优化[J]. 机械工程学报, 2013, 49(13):132-138. Jiao Hongyu, Zhou Qicai, Li Wenjun, et al. Periodic topology optimization using variable density method[J]. Chinese Journal of Mechanical Engineering, 2013, 49(13):132-138. (in Chinese)
[17] 龙凯, 贾娇. 基于ICM法的传热结构周期性拓扑优化设计[J]. 工程力学, 2015, 32(5):227-235. Long Kai, Jia Jiao. Periodic topology optimization design for thermal conductive structure using ICM method[J]. Engineering Mechanics, 2015, 32(5):227-235. (in Chinese)
[18] He G Q, Huang X D, Wang H, et al. Topology optimization of periodic structures using BESO based on unstructured design points[J]. Structural and Multidisciplinary Optimization, 2016, 53(2):271-275.
[19] 付志方, 王春洁. 载荷不确定的周期性结构稳健拓扑优化[J]. 北京航空航天大学学报, 2017, 43(4):747-753. Fu Zhifang, Wang Chunjie. Robust topology optimization of periodic structures under uncertain loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4):747-753. (in Chinese)
[20] Sigmund O, Torquato S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6):1037-1067.
[21] Zhou S W, Wang M Y. Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition[J]. Structural and Multidisciplinary Optimization, 2007, 33(2):89-111.
[22] Tavakoli R, Mohseni S M. Alternating active-phase algorithm for multimaterial topology optimization problems:a 115-line MATLAB implementation[J]. Structural and Multidisciplinary Optimization, 2014, 49(4):621-642.
[23] Cui M T, Chen H F, Zhou J L, et al. A meshless method for multi-material topology optimization based on the alternating active-phase algorithm[J]. Engineering with Computers, 2017, 33(4):871-884.
[24] Vogiatzis P, Chen S K, Wang X, et al. Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method[J]. Computer-Aided Design, 2017, 83(2):15-32.
[25] Bendsøe M P, Sigmund O. Topology optimization theory, methods and application[M]. Berlin:Springer, 2003:9-21.
[26] 隋允康, 叶红玲, 刘建信, 等. 追究根基的结构拓扑优化方法[J]. 工程力学, 2008, 25(增刊2):7-19. Sui Yunkang, Ye Hongling, Liu Jianxin, et al. A structural topological optimization method based on exploring conceptual root[J]. Engineering Mechanics, 2008, 25(Sup.2):7-19. (in Chinese)
[1] 康雷, 应祖光, 倪一清. 轨道梁周期支承缺失下的频响特性[J]. 工程力学, 2018, 35(S1): 145-149,155.
[2] 周大为, 陈飙松, 李云鹏, 张盛. 基于广义模态截断扩增方法的结构频响拓扑变量灵敏度分析[J]. 工程力学, 2018, 35(11): 1-7,16.
[3] 白伟, 李取浩, 陈文炯, 刘书田. 基于映射的拓扑优化最大尺寸控制方法[J]. 工程力学, 2017, 34(9): 18-26.
[4] 彭细荣, 隋允康. 基于ICM法的高层建筑大型支撑体系拓扑优化[J]. 工程力学, 2017, 34(5): 17-22,51.
[5] 陈春强, 陈前. 电流变夹层板的拓扑优化研究[J]. 工程力学, 2016, 33(增刊): 290-295.
[6] 乔升访, 周克民. 基于类桁架材料模型的不确定荷载下结构拓扑优化[J]. 工程力学, 2016, 33(1): 252-256.
[7] 王睿, 张晓鹏, 吴良武, 亢战. 考虑瞬态响应的薄板结构阻尼材料层拓扑优化[J]. 工程力学, 2015, 32(6): 1-7,14.
[8] 鲁英春,李敏,刘远东. 考虑设计相关载荷的稳态热传导拓扑优化设计[J]. 工程力学, 2015, 32(5): 1-5,27.
[9] 龙凯,贾娇. 基于ICM法的传热结构周期性拓扑优化设计[J]. 工程力学, 2015, 32(5): 227-235.
[10] 叶红玲, 李耀明, 陈宁. 基于ICM方法的层合板结构流固耦合频率约束拓扑优化[J]. 工程力学, 2015, 32(11): 228-235.
[11] 侯政, 刘仙名, 吴炜, 何辉. 基于拓扑优化技术的升力面结构颤振抑制设计[J]. 工程力学, 2015, 32(1): 241-246,256.
[12] 林哲祺, 王炫盛. 基于相场函数的压电复合材料俘能器拓扑优化设计[J]. 工程力学, 2015, 32(1): 198-204.
[13] 王存福, 赵敏, 葛彤. 水下耐压结构拓扑优化设计方法探究[J]. 工程力学, 2015, 32(1): 247-256.
[14] 叶红玲, 李耀明, 张颜明, 隋允康. 基于对数型Heaviside近似函数作为过滤函数的动力响应结构拓扑优化ICM方法[J]. 工程力学, 2014, 31(6): 13-20.
[15] 隋允康, 王西旺, 杜家政. 位移约束刚架拓扑优化的非线性有无复合体方法[J]. 工程力学, 2014, 31(5): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日