工程力学 ›› 2019, Vol. 36 ›› Issue (3): 105-113.doi: 10.6052/j.issn.1000-4750.2018.01.0001

• 土木工程学科 • 上一篇    下一篇

铰支桁架-框架结构抗震设计与性能研究

蒋庆1,2, 王瀚钦1, 冯玉龙1, 种迅1   

  1. 1. 合肥工业大学土木与水利工程学院, 安徽, 合肥 230009;
    2. 华南理工大学亚热带建筑科学国家重点实验室, 广东, 广州 510640
  • 收稿日期:2018-01-02 修回日期:2018-05-17 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 冯玉龙(1990-),男,安徽滁州人,讲师,工学博士,主要从事结构工程和工程抗震研究(E-mail:feng_yulong@126.com). E-mail:feng_yulong@126.com
  • 作者简介:蒋庆(1984-),男,安徽蚌埠人,副教授,工学博士,主要从事结构工程和工程抗震研究(E-mail:ahhfjq@163.com);王瀚钦(1994-),男,安徽合肥人,硕士生,主要从事结构工程和工程抗震研究(E-mail:wanghq@mail.hfut.edu.cn);种迅(1978-),女,河北辛集人,教授,工学博士,主要从事结构工程和工程抗震研究(E-mail:chongxun_sun@163.com)
  • 基金资助:
    国家自然科学基金项目(51708166,51408179);合肥工业大学博士专项科研资助基金项目(JZ2016HGBZ1000);国家重点实验室基金项目(2015ZA04)

SEISMIC DESIGN AND PERFORMANCE OF HINGED TRUSS FRAME STRUCTURES

JIANG Qing1,2, WANG Han-qin1, FENG Yu-long1, CHONG Xun1   

  1. 1. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, Anhui 230009, China;
    2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510640, China
  • Received:2018-01-02 Revised:2018-05-17 Online:2019-03-29 Published:2019-03-16

摘要: 合理设计的框架会因为地震力分布不均匀致使框架的部分楼层梁率先屈服,导致结构层间位移角不均匀系数(DCF)增加,很难出现所有楼层梁端和柱底出铰的完全梁铰机制。为改善普通钢框架层间集中损伤和侧向刚度偏小问题,提出在框架中设置拉链柱和斜撑,形成铰支桁架-框架,控制框架侧向位移大小和分布。推导了框架弹性DCF值,并以此作为铰支桁架-框架的DCF目标值,进而提出了铰支桁架与框架的合理刚度比;给出了基于DCF抗震设计流程,设计算例达到了预期的位移和DCF性能目标。对比了框架、摇摆墙框架和铰支桁架-框架的抗震性能,结果表明:铰支桁架可以提高框架的抗侧刚度,使框架的塑性铰分布模式由不完全梁铰机制转变为完全梁铰机制,使框架层间位移角及剪力分布均匀;相比于摇摆墙框架,铰支桁架-框架具有较大的侧向刚度和相近的侧向变形模式。

关键词: 损伤集中效应, 铰支桁架, 框架, 抗震设计, 抗震性能

Abstract: Beams at certain stories of a reasonably-designed frame may yield first due to a uniformly-distributed seismic force, which causes an increase in the drift concentration factor (DCF). It is difficult for a frame to exhibit a complete beam hinge mechanism, which requires that the plastic hinges appear at the beam-ends of all stories and the column base. To reduce the inter-story damage concentration and increase the lateral stiffness of common steel frames, by installing zipper columns and braces in the frame, a hinged truss frame structure is proposed to control the lateral displacement and its distribution of the frame. The elastic DCFs of frames are derived and used as the DCF target values of the hinged truss frames. Thus, the reasonable stiffness ratio of the hinged truss to the frame is determined. A seismic design process based on the DCF is presented and the design example shows the expected displacement and DCF performance target. The seismic performance of a bare frame, a rocking wall frame and a hinged truss frame is compared. The results show that the hinged truss can improve the lateral stiffness of the frame, change the plastic hinge distribution mode of the frame from incomplete to complete beam hinge mechanism and make the frame inter-story drift ratio and shear to distribute uniformly. In comparison to the rocking wall frame, the hinged truss frame shows larger lateral stiffness and similar lateral deformation mode.

Key words: damage concentration effect, hinged truss, frame, seismic design, seismic performance

中图分类号: 

  • TU352.1+1
[1] Wada A, Connor J J, Kawai H, et al. Damage tolerant structures[C]//Proceedings of Fifth US -Japan Workshop on the Improvement of Building Structural Design and Construction Practices. San Diego, California, USA:Applied Technology Council, 1992.
[2] 和田章, 岩田卫, 清水敬三, 等. 建筑结构损伤控制设计[M]. 北京:中国建筑工业出版社, 2014:56-63. Wada A, Iwata M, Shimizu K, et al. Damage controlbased design of buildings[M]. Beijing:China Architecture & Building Press, 2014:56-63. (in Chinese)
[3] 郝建兵. 损伤可控结构的地震反应分析及设计方法研究[D]. 南京:东南大学, 2015. Hao Jianbing. Research on the seismic responses and design method of damage-controllable structures[D]. Nanjing:Southeast University, 2015. (in Chinese)
[4] 陈以一, 贺修樟, 柯珂, 等. 可更换元结构的特征与关键技术[J]. 建筑结构学报, 2016, 37(2):1-10. Chen Yiyi, He Xiuzhang, Ke Ke, et al. Characteristics and technical issues on structural systems with replaceable damage-concentrated elements[J]. Journal of Building Structures, 2016, 37(2):1-10. (in Chinese)
[5] 郭金龙, 蔡健, 陈庆军. 地震作用下钢框架落层倒塌效应模拟分析[J]. 工程力学, 2016, 33(6):171-179. Guo Jinlong, Cai Jian, Chen Qingjun. Simulation analysis on collapse response of a steel frame under seismic action[J]. Engineering Mechanics, 2016, 33(6):171-179. (in Chinese)
[6] 张昊宇, 王涛, 林旭川, 等. 尼泊尔8. 1级地震钢筋混凝土框架典型震害及讨论[J]. 工程力学, 2016, 33(9):59-68. Zhang Haoyu, Wang Tao, Lin Xuchuan, et al. Seismic damages of frames in Nepal MS8.1 earthquake[J]. Engineering Mechanics, 2016, 33(9):59-68. (in Chinese)
[7] 叶列平, 陆新征, 赵世春, 等. 框架结构抗地震倒塌能力的研究:汶川地震极震区几个框架结构震害案例分析[J]. 建筑结构学报, 2009, 30(6):67-76. Ye Lieping, Lu Xinzheng, Zhao Shichun, et al. Seismic collapse resistance of RC frame structures-case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchuan Earthquake[J]. Journal of Building Structures, 2009, 30(6):67-76. (in Chinese)
[8] 岳茂光, 王东升, 孙治国, 等. 汶川地震下框架结构的抗倒塌能力分析[J]. 工程力学, 2012, 29(11):250-256. Yue Maoguang, Wang Dongsheng, Sun Zhiguo, et al. Analysis on collapse resistant capability of reinforced concrete frame structure under Wenchuan earthquake[J]. Engineering Mechanics, 2012, 29(11):250-256. (in Chinese)
[9] 白久林, 杨乐, 欧进萍. 基于等损伤的钢框架结构抗震性能优化[J]. 工程力学, 2015, 32(6):76-83. Bai Jiulin, Yang Le, Ou Jinping, Aseismic performance optimization of steel frame structures based on uniform damage concept[J]. Engineering Mechanics, 2015, 32(6):76-83. (in Chinese)
[10] 叶列平, 马千里, 缪志伟. 钢筋混凝土框架结构强柱弱梁设计方法的研究[J]. 工程力学, 2010, 27(12):102-113. Ye Lieping, Ma Qianli, Miao Zhiwei. Study on weak beam-strong column design method of RC frame structures[J]. Engineering Mechanics, 2010, 27(12):102-113. (in Chinese)
[11] Housener G W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2):403-417.
[12] Ajrab J J, Pekcan G, Mander J B. Rocking wall-frame structures with supplemental tendon systems[J]. Journal of Structural Engineering, 2004, 130(6):895-903.
[13] 曲哲, 叶列平. 摇摆墙-框架体系的抗震损伤机制控制研究[J]. 地震工程与工程振动, 2011, 31(4):40-50. Qu Zhe, Ye Lieping. Seismic damage mechanism control of rocking wall-frame system[J]. Earthquake Engineering and Engineering Dynamics, 2011, 31(4):40-50. (in Chinese)
[14] Qu B, Sanchez-Zamora F, Pollino M. Mitigation of inter-story drift concentration in multi-story steel concentrically braced frames through implementation of rocking cores[J]. Engineering Structures, 2014, 70(9):208-217.
[15] 曹海韵, 潘鹏, 叶列平, 等. 混凝土框架摇摆墙结构体系的抗震性能分析[J]. 建筑科学与工程学报, 2011, 28(1):64-69. Cao Haiyun, Pan Peng, Ye Lieping, et al. Seismic performance analysis of RC frame rocking-wall structure system[J]. Journal of Architecture and Civil Engineering, 2011, 28(1):64-69. (in Chinese)
[16] 冯玉龙, 吴京, 孟少平, 等. 底部带有屈曲约束支撑的摇摆墙框架结构抗震性能分析[J]. 振动与冲击, 2016, 35(23):35-40. Feng Yulong, Wu Jing, Meng Shaoping, et al. Aseismic performance analysis of rocking wall frame structures with buckling-restrained braces in base[J]. Journal of Vibration and Shock, 2016, 35(23):35-40. (in Chinese)
[17] 吴守君, 潘鹏, 张鑫. 框架-摇摆墙结构受力特点分析及其在抗震加固中的应用[J]. 工程力学, 2016, 33(6):54-60, 67. Wu Shoujun, Pan Peng, Zhang Xin. Characteristics of frame rocking wall stucture and its application in aseismic retrofit[J]. Engineering Mechanics, 2016, 33(6):54-60, 67. (in Chinese)
[18] Takeuchi T, Chen X, Matsui R. Seismic performance of controlled spine frames with energy-dissipating members[J]. Journal of Constructional Steel Research, 2015, 114:51-65.
[19] 杨宁. 采用摇摆桁架和BRB的钢框架结构地震失效模式优化与控制[D]. 哈尔滨:哈尔滨工业大学, 2016. Yang Ning. Optimization and control of failure modes of steel frame with rocking truss and BRBS[D]. Harbin:Harbin Institute of Technology, 2016. (in Chinese)
[20] McKenna F, Fenves G L. The OpenSees command language primer[R]. Berkeley:PEER, University of California, 2000.
[21] 于海丰, 张岩, 张文元, 等. 拉链柱支撑钢框架结构振动台试验研究[J]. 建筑结构学报, 2016, 37(2):55-62. Yu Haifeng, Zhang Yan, Zhang Wenyuan, et al. Shaking table test of zipper frames[J]. Journal of Building Structures, 2016, 37(2):55-62. (in Chinese)
[22] GB 50017-2003, 钢结构设计规范[S]. 北京:中国计划出版社, 2003. GB 50017-2003, Code for design of steel structures[S]. Beijing:China Planning Press, 2003. (in Chinese)
[1] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[2] 杜轲, 滕楠, 孙景江, 燕登, 骆欢. 基于共旋坐标和力插值纤维单元的RC框架结构连续倒塌构造方法[J]. 工程力学, 2019, 36(3): 95-104.
[3] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[4] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[5] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[6] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[7] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[8] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[9] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[10] 陆新征, 顾栋炼, 周建龙, 包联进, 钱鹏, 卢啸, 林元庆. 改变框架-核心筒结构剪力调整策略对其抗震性能影响的研究[J]. 工程力学, 2019, 36(1): 183-191,215.
[11] 贾明明, 周洲, 吕大刚, 杨宁. 摇摆桁架-BRB-钢框架体系地震失效模式与抗震性能分析[J]. 工程力学, 2018, 35(S1): 73-79.
[12] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[13] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[14] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[15] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日