工程力学 ›› 2019, Vol. 36 ›› Issue (5): 67-75.doi: 10.6052/j.issn.1000-4750.2017.12.0996

• 土木工程学科 • 上一篇    下一篇

考虑细观组分影响的混凝土宏观力学性能理论预测模型

李冬1,2, 金浏2, 杜修力2, 刘晶波1, 张帅2, 余文轩2   

  1. 1. 清华大学土木系, 北京 100084;
    2. 北京工业大学城市减灾与防灾防护教育部重点实验室, 北京 100124
  • 收稿日期:2017-12-28 修回日期:2018-03-13 出版日期:2019-05-25 发布日期:2018-03-23
  • 通讯作者: 金浏(1985-),男,江苏人,教授,博士,博导,主要从事混凝土及混凝土结构领域研究(E-mail:kinglew2007@163.com). E-mail:kinglew2007@163.com
  • 作者简介:李冬(1988-),男,北京人,助理研究员,博士,主要从事混凝土及混凝土结构领域研究(E-mail:winte_lee@126.com);杜修力(1962-),男,四川人,教授,博士,博导,主要从事地震工程领域研究(E-mail:duxiuli@bjut.edu.cn);刘晶波(1956-),男,辽宁人,教授,博士,博导,主要从事结构工程和防灾减灾工程领域研究(E-mail:liujb@mail.tsinghua.edu.cn);张帅(1992-),男,河南人,硕士生,主要从事混凝土结构尺寸效应研究(E-mail:zhangshuai_bjut@mail.tsinghua.edu.cn);余文轩(1993-),男,浙江人,硕士生,主要从事混凝土结构尺寸效应研究(E-mail:ywxmailbox@163.com).
  • 基金资助:
    国家自然科学基金青年科学基金项目(51708007);中国博士后科学基金面上项目(2017M620788);国家重点研发计划专项项目(2016YFC0701100)

A THEORETICAL PREDICTION MODEL OF CONCRETE MACROSCOPIC MECHANICAL PROPERTIES CONSIDERING THE INFLUENCE OF MESOSCOPIC COMPOSITION

LI Dong1,2, JIN Liu2, DU Xiu-li2, LIU Jing-bo1, ZHANG Shuai2, YU Wen-xuan2   

  1. 1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2017-12-28 Revised:2018-03-13 Online:2019-05-25 Published:2018-03-23

摘要: 混凝土宏观力学性能与其内部细观结构构造密切相关。该文建立了一类能够考虑细观组分影响的混凝土宏观力学性能理论预测模型。首先,采用细观力学数值试验法对理论模型中的参数进行了标定;进而,基于该模型对混凝土断裂能和单轴抗拉强度在材料层次的尺寸效应行为进行了分析。结果表明:混凝土断裂能和单轴抗拉强度均随骨料级配(即最大骨料粒径)发生变化,且受到界面特性的影响。当界面过渡区力学性能相对薄弱时,混凝土强度较低,断裂能和单轴抗拉强度随骨料级配增大而呈现减小的趋势;当界面过渡区力学性能较强时,混凝土强度较高,断裂能和单轴抗拉强度随骨料级配增大亦呈现增大的趋势。计算结果与试验结果吻合良好,验证了该文建立的理论预测模型的准确性和合理性。

关键词: 混凝土, 尺寸效应, 细观力学, 骨料级配, 界面特性

Abstract: The macroscopic mechanical properties of concrete are highly related to its internal mesoscopic composition. This paper presents a theoretical prediction model of concrete macroscopic mechanical properties considering the mesoscopic composition. Firstly, the parameters in the theoretical model are calibrated by meso-scale numerical tests. Then, the size effect of the concrete fracture energy and the uniaxial tensile strength in material-level is analyzed based on the proposed model. The results show that the concrete fracture energy and the uniaxial tensile strength both vary with the aggregate gradation (i.e. the maximum aggregate size), and they are also influenced by the characteristics of aggregate-matrix interface. When the aggregate-matrix interfaces are weak, the concrete strength is low, and the concrete fracture energy and the uniaxial tensile strength both decrease with the increase of the aggregate gradation. When the aggregate-matrix interfaces are relatively strong, the concrete strength is high, and the concrete fracture energy and the uniaxial tensile strength both increase with the increase of the aggregate gradation. The calculation results are in good agreement with the test results and verify the accuracy and rationality of the theoretical prediction model established in this paper.

Key words: concrete, size effect, meso-mechanics, aggregate gradation, aggregate-matrix interface

中图分类号: 

  • TU528
[1] Bažant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. New York:CRC press, 1998, 7-15.
[2] 刘兴阳, 邹德高, 李占超. 混凝土名义强度的尺寸效应研究[J]. 建筑材料学报, 2017, 20(5):680-684. Liu Xingyang, Zou Degao, Li Zhanchao. Study on size effect of concrete nominal strength[J]. Journal of Building Materials, 2017, 20(5):680-684. (in Chinese)
[3] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅰ):材料层次[J]. 土木工程学报, 2017, 50(9):28-45. Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (Ⅰ):Concrete materials[J]. China Civil Engineering Journal, 2017, 50(9):28-45. (in Chinese)
[4] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅱ):构件层次[J]. 土木工程学报, 2017, 50(11):24-44.Du Xiuli, Jin Liu, Li Dong. A state-of-the-art review on the size effect of concretes and concrete structures (Ⅱ):RC members[J]. China Civil Engineering Journal, 2017, 50(11):24-44. (in Chinese)
[5] 石建光, 许岳周, 叶志明. 骨料级配对混凝土性能影响的细观分析[J]. 工程力学, 2009, 26(4):134-138. Shi Jianguang, Xu Yuezhou, Ye Zhiming. Mesoanalysis of concrete behavior due to effect of aggregate gradation[J]. Engineering Mechanics, 2009, 26(4):134-138. (in Chinese)
[6] 杜敏, 金浏, 李冬, 等. 粗骨料粒径对混凝土弯拉强度尺寸效应影响的试验研究[J]. 北京工业大学学报, 2016, 42(6):912-918. Du Min, Jin Liu, Li Dong, et al. Experimental study of the influence of coarse aggregate size on the size effect of concrete flexural strength[J]. Journal of Beijing University of Technology, 2016, 42(6):912-918. (in Chinese)
[7] 杜敏, 金浏, 李冬, 等. 骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9):54-63. Du Min, Jin Liu, Li Dong, et al. Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading[J]. Engineering Mechanics, 2017, 34(9):54-63. (in Chinese)
[8] Scrivener K L, Crumbie A K, Laugesen P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete[J]. Interface Science, 2004, 12(4):411-421.
[9] 董芸, 杨华全, 张亮, 等. 骨料界面特性对混凝土力学性能的影响[J]. 建筑材料学报, 2014, 17(4):598-605. Dong Yun, Yang Quanhua, Zhang Liang, et al. Effects of aggregate interface characteristics on the mechanical property of concrete[J]. Journal of Building Materials, 2014, 17(4):598-605.
[10] DL/T 5330-2015, 水工混凝土配合比设计规程[S]. 北京:中国电力出版社, 2015. DL/T 5330-2015, Code for mix design of hydraulic concrete[S]. Beijing:China Electric Power Press, 2015. (in Chinese)
[11] Hughes B P, Chapman G P. The deformation of concrete and micro-concrete in compression and tension with particular reference to aggregate size[J]. Magazine Concrete Research, 1966, 18(54):19-24.
[12] Thomas T C, Slate F O. Tensile bond strength between aggregate and cement paste or mortar[C]. ACI Journal Proceedings, 1963, 60(4):465-486.
[13] Tsiskreli G D, Dzhavakhidze A N. The effect of aggregate size on strength and deformation of concrete[J]. Hydrotechnical Construction, 1970, 4(5):448-453.
[14] Saouma V E, Broz J J, Brühwiler E, et al. Effect of aggregate and specimen size on fracture properties of dam concrete[J]. Journal of Materials in Civil Engineering, 1991, 3(3):204-218.
[15] Deng Z, Li Q. Effect of aggregate type on mechanical behavior of dam concrete[J]. ACI Materials Journal, 2004, 101(6):483-492.
[16] Akçaoğlu T, Tokyay M, Çelik T. Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression[J]. Cement and Concrete Composites, 2004, 26(6):633-638.
[17] 苏捷, 方志. 不同骨料组分混凝土立方体抗压强度尺寸效应试验研究[J]. 建筑结构学报, 2014, 35(2):152-157. Su Jie, Fang Zhi. Experimental study on impact of aggregate mixture on dimensional effect of concrete cubic compressive strength[J]. Journal of Building Structures, 2014, 35(2):152-157. (in Chinese)
[18] 阮征, 陈力, 洪建, 等. 骨料和砂浆等影响混凝土强度的细观层次机理分析[J]. 建筑材料学报, 2014, 17(6):952-958. Ruan Zheng, Chen Li, Hong Jian, et al. Mesoscopic analysis on the mechanism of effects of aggregate and mortar on concrete strength[J]. Journal of Building Materials, 2014, 17(6):952-958. (in Chinese)
[19] 周尚志, 谌林, 刘明群. 骨料对混凝土力学性能的影响分析[J]. 建筑材料学报, 2016, 19(1):143-148. Zhou Shangzhi, Zhan Lin, Liu Mingqun. Analysis on effect of aggragate on mechanical property of concrete[J] Journal of Building Materials, 2016, 19(1):143-148. (in Chinese)
[20] Uddin M T, Mahmood A H, Kamal M R I, et al. Effects of maximum size of brick aggregate on properties of concrete[J]. Construction and Building Materials, 2017, 134:713-726.
[21] Meddah M S, Zitouni S, Belâabes S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete[J]. Construction and Building Materials, 2010, 24(4):505-512.
[22] Su R K L, Cheng B. The effect of coarse aggregate size on the stress-strain curves of concrete under uniaxial compression[J]. Hkie Transactions, 2008, 15(3):33-39.
[23] Zhang J, Liu Q, Wang L. Effect of coarse aggregate size on stress crack opening relationship in normal and high strength concrete[J]. Journal of Materials Science and Technology, 2005, 21(5):691-700.
[24] Petersson P E. Fracture energy of concrete:Practical performance and experimental results[J]. Cement and Concrete Research, 1980, 10(1):91-101.
[25] Tasdemir C, Tasdemir M A, Lydon F D, et al. Effects of silica fume and aggregate size on the brittleness of concrete[J]. Cement and Concrete Research, 1996, 26(1):63-68.
[26] Wu K, Chen B, Yao W. Study of the influence of aggregate size distribution on mechanical properties of concrete by acoustic emission technique[J]. Cement and Concrete Research, 2001, 31(6):919-923.
[27] Rao G A, Prasad B K. Fracture energy and softening behavior of high-strength concrete[J]. Cement and Concrete Research, 2002, 32(2):247-252.
[28] Wu K R, Yan A, Yao W, et al. The influence of RPCA on the strength and fracture toughness of HPC[J]. Cement and Concrete Research, 2002, 32(3):351-355.
[29] Chen B, Liu J. Effect of aggregate on the fracture behavior of high strength concrete[J]. Construction and Building Materials, 2004, 18(8):585-590.
[30] Ohno K, Uji K, Ueno A, et al. Fracture process zone in notched concrete beam under three-point bending by acoustic emission[J]. Construction and Building Materials, 2014, 67(6):139-145.
[31] 管俊峰, 李庆斌, 吴智敏, 等. 确定现场浇筑全级配水工混凝土双K断裂参数的最小试件尺寸[J]. 应用基础与工程科学学报, 2016, 24(6):1219-1231. Guan Junfeng, Li Qingbin, Wu Zhimin, et al.Determination of minimum size for double K fracture parameters of site-casting fully-graded hydraulic concrete[J]. Journal of Basic Science and Engineering, 2016, 24(6):1219-1231. (in Chinese)
[32] Bažant Z P. Size effect in blunt fracture:concrete, rock, metal[J]. ASCE Journal of Engineering Mechanics, 1984, 110(4):518-535.
[33] Carpinteri A, Cornetti P, Puzzi S. A stereological analysis of aggregate grading and size effect on concrete tensile strength[J]. International Journal of Fracture, 2004, 128(1-4):233-242.
[34] 管俊峰, 王强, Hu Xiaozhi, 等. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12):22-30. Guan Junfeng, Wang Qiang, Hu Xiaozhi, et al. Boundary effect fracture model for concrete and granite considering aggregate size[J]. Engineering Mechanics, 2017, 34(12):22-30. (in Chinese)
[35] 李冬, 金浏, 杜修力, 等. 骨料级配对二维模型混凝土单轴抗拉强度影响的理论研究[J]. 工程力学, 2017, 34(6):64-72. Li Dong, Jin Liu, Du Xiuli, et al. A theoretical study on the influence of aggregate gradation on the tensile strength of 2-dimensional model concrete[J]. Engineering Mechanics, 2017, 34(6):64-72. (in Chinese)
[36] Rosselló C, Elices M. Fracture of model concrete:1. Types of fracture and crack path[J]. Cement and Concrete Research, 2004, 34(8):1441-1450.
[37] Rosselló C, Elices M, Guinea G V. Fracture of model concrete:2. Fracture energy and characteristic length[J]. Cement and Concrete Research, 2006, 36(7):1345-1353.
[38] Elices M, Rocco C G. Effect of aggregate size on the fracture and mechanical properties of a simple concrete[J]. Engineering Fracture Mechanics, 2008, 75(13):3839-3851.
[39] Unger J F, Eckardt S. Multiscale modeling of concrete[J]. Archives of Computational Methods in Engineering, 2011, 18(3):341.
[40] Song Z, Lu Y. Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data[J]. International Journal of Impact Engineering, 2008, 35(6):41-55.
[41] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[42] 周甲佳, 潘金龙, 梁坚凝, 等. 尺寸效应对水泥净浆与粗骨料界面黏结性能的影响[J]. 建筑材料学报, 2012, 15(5):712-716. Zhou Jiajia, Pan Jinlong, Liang Jianning, et al. Influence of size effect on bonding performance between coarse aggregate and cement paste[J]. Journal of Building Materials, 2012, 15(5):712-716. (in Chinese)
[1] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
[2] 郑文忠, 李玲, 张弛. HRB500/HRB600钢筋作纵筋的混凝土框架梁端弯矩调幅试验研究[J]. 工程力学, 2019, 36(5): 76-91,109.
[3] 魏慧, 吴涛, 刘洋, 刘喜. 考虑尺寸效应的深受弯构件受剪模型分析[J]. 工程力学, 2019, 36(5): 130-136.
[4] 肖宇哲, 李易, 陆新征, 任沛琪, 何浩祥. 混凝土梁柱子结构连续倒塌动力效应的试验研究[J]. 工程力学, 2019, 36(5): 44-52.
[5] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[6] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[7] 梁兴文, 汪萍, 徐明雪, 王照耀, 于婧, 李林. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119.
[8] 徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135-146.
[9] 杨勇, 陈阳, 张锦涛, 林冰, 于云龙. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109-116.
[10] 任振华, 曾宪桃, 孙浚博. 内嵌CFRP筋加固宽缺口混凝土梁内力解析与试验研究[J]. 工程力学, 2019, 36(4): 117-124.
[11] 郑文忠, 李玲, 王英. HRB500/HRB600钢筋作纵筋的混凝土连续梁弯矩调幅试验研究[J]. 工程力学, 2019, 36(3): 79-94.
[12] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[13] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[14] 于云龙, 杨勇, 薛亦聪, 刘亚平, 蒋雪雅. 型钢混凝土空腹叠合梁受剪承载力试验研究[J]. 工程力学, 2019, 36(3): 214-223.
[15] 白卫峰, 刘霖艾, 管俊峰, 姚贤华. 基于统计损伤理论的硫酸盐侵蚀混凝土本构模型研究[J]. 工程力学, 2019, 36(2): 66-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田敏 , 赵林, 焦双健, 葛耀君. 双曲壳结构非均匀风压作用局部稳定验算[J]. 工程力学, 0, (): 0 .
[2] 王峰, 郑保敬, 林皋, 周宜红, 范勇. 热弹性动力学耦合问题的插值型移动最小二乘无网格法研究[J]. 工程力学, 2019, 36(4): 37 -43,51 .
[3] 张肖雄, 贺佳. 基于扩展卡尔曼滤波的结构参数和荷载识别研究[J]. 工程力学, 2019, 36(4): 221 -230 .
[4] 杜咏, 孙亚凯, 李国强. 预应力钢绞线高温力学性能试验研究[J]. 工程力学, 2019, 36(4): 231 -238 .
[5] 史凤凯, 刘福胜, 王少杰, 岳艺博, 刘康, 黄兴淮. 自保温暗骨架承重墙抗震性能试验研究与分析[J]. 工程力学, 2019, 36(4): 158 -166,187 .
[6] 覃茜, 徐千军. 成层混凝土的剪切强度和II 型断裂韧度 [J]. 工程力学, 0, (): 0 .
[7] 谢昭波, 解琳琳, 林元庆, 陆新征. 典型框架‐核心筒单重与双重抗侧力体系的抗震性能与剪力分担研究[J]. 工程力学, 0, (): 0 .
[8] 庞瑞, 许清风, 梁书亭, 朱筱俊, 吴见丰. 分布式连接全装配RC楼盖竖向承载力与变形分析[J]. 工程力学, 2019, 36(4): 147 -157 .
[9] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196 -205 .
[10] 文磊, 孔纲强, 张振东, 李青松. 海相淤泥质土中后注浆微型钢管桩浆液扩散及承载特性研究[J]. 工程力学, 2019, 36(4): 214 -220,230 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日