工程力学 ›› 2019, Vol. 36 ›› Issue (2): 239-248.doi: 10.6052/j.issn.1000-4750.2017.12.0979

• 其他工程学科 • 上一篇    下一篇

球囊扩张式血管支架介入对弯曲血管的生物力学损伤研究

江旭东1, 李鹏飞1, 刘铮1, 滕晓艳2   

  1. 1. 哈尔滨理工大学机械动力工程学院, 哈尔滨 150080;
    2. 哈尔滨工程大学机电工程学院, 哈尔滨 150001
  • 收稿日期:2017-12-25 修回日期:2018-06-29 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 江旭东(1977-),男,吉林人,副教授,博士,硕导,从事医疗结构非线性力学建模与仿真研究(E-mail:xudongjiang@sina.com). E-mail:xudongjiang@sina.com
  • 作者简介:李鹏飞(1989-),男,山西人,硕士生,从事血管支架非线性有限元分析研究(E-mail:624395331@qq.com);刘铮(1992-),男,江苏人,硕士生,从事血管支架设计优化研究(E-mail:18317711897@163.com);滕晓艳(1980-),女,吉林人,讲师,博士,硕导,从事结构动力学与拓扑优化研究(E-mail:tengxiaoyan@hrbeu.edu.cn).
  • 基金资助:
    国家自然科学基金青年基金项目(51505096);黑龙江省自然科学基金项目(E2015026);黑龙江省博士后科研启动基金项目(LBH-Q15070)

NUMERICAL INVESTIGATION OF BIOMECHANICAL INJURE OF CURVED VESSELS INDUCED BY INTERVENED BALLOON EXPANDABLE VASCULAR STENT

JIANG Xu-dong1, LI Peng-fei1, LIU Zheng1, TENG Xiao-yan2   

  1. 1. Mechanical Power and Engineering College, Harbin University of Science and Technology, Harbin 150080, China;
    2. Mechanical and Electrical Engineering College, Harbin University of Engineering, Harbin 150001, China
  • Received:2017-12-25 Revised:2018-06-29 Online:2019-02-22 Published:2019-02-22

摘要: 构建了球囊扩张式血管支架介入系统的非线性有限元模型,考虑了血管斑块类型对其本构模型的影响,分析了A型与B型血管支架在血管狭窄率-24%、40%、50%,曲率半径-6 mm、10 mm、20 mm,狭窄血管的壁面应力分布规律,研究了血管支架构型、狭窄血管几何参数和血管生物力学损伤的关系。数值分析结果表明,血管壁面应力随着狭窄率的增加而显著升高,随着血管曲率半径的增加而下降相对平缓;但是,扩张加载阶段的血管壁面应力显著高于卸载阶段,易于引起血管斑块的脆性断裂引起血管生物力学损伤。由于A型血管支架相对于B型血管支架具有纵向柔顺性更优的联接筋构型,导致A型血管支架引起的血管壁面应力低于B型支架,因而降低了A型血管支架对于血管的生物力学损伤。

关键词: 血管支架, 非线性有限元, 狭窄率, 血管曲率半径, 血管壁面应力

Abstract: The schematic nonlinear finite element model of intervened vascular stent is developed to investigate the relationship between stent design, arterial geometry and injures induced by implantation of a balloon expandable vascular stent into a stenosed artery. The influence of plaque composition in its constitutive model is also considered. The arterial wall stress distribution and magnitude are obtained and analyzed during A-stent and B-stent intervened to a curved vessel with varying restenosis rate of -24%, 40% and 50%, and curvature radius of -6 mm, 10 mm and 20 mm. The numerical results show that the arterial wall stress remarkably increases with increasing restenosis rate, while it decreases slowly with increasing curvature radius of the curved vessel. However, the arterial wall stress is much higher during expanding the stent than that during unloading the stent. Consequently, the resulting high arterial wall stress during expanding the stent can lead to plaque or arterial rupture and subject them to biomechanical injure. In addition, the stresses induced within plaque tissues and arteries by A-stent implantation is less than those by B-stent implantation because the former equipped with more flexible links exhibits larger longitudinal flexibility than the latter. These findings suggest a lower risk of arterial biomechanical injury for A-stent as compared with B-stent.

Key words: vascular stent, nonlinear finite element, restenosis rate, arterial curvature radius, arterial wall stress

中图分类号: 

  • TP391
[1] Fereidoonnezhad B, Naghdabadi R, Sohrabpour S, Holzapfel G A. A mechanobiological model for damage induced growth in arterial tissue with application to in-stent restenosis[J]. Journal of the Mechanics and Physics of Solids, 2017, 101:311-327.
[2] Tahir H, Bonacasas C, Narracott A J, et al. Endothelial repair process and its relevance to longitudinal neointimal tissue patterns:comparing histology with in silico modelling[J]. Journal of the Royal Society Interface, 2014, 11(94):20140022.
[3] David Martin, Fergal Boyle. Computational structural modeling of coronary stent deployment:a review[J]. Computer Methods in Biomechanics and Biomechanical Engineering, 2011, 14(4):331-348.
[4] 李萍萍, 张若京. 具有周期结构的血管支架有限元分析[J]. 工程力学, 2012, 29(9):369-374. Li Pingping, Zhang Ruojing. Finite element analysis of stent with periodic structure[J]. Engineering Mechanics, 2012, 29(9):369-374. (in Chinese)
[5] 赵丹阳, 顿锁, 田慧卿, 等. 生物可降解聚合物血管支架膨胀性能有限元分析[J]. 大连理工大学学报, 2014, 54(1):54-59. Zhao Danyang, Dun Suo, Tian Huiqing, et al. Finite element analysis of expansion performance biodegradable polymer stents[J]. Journal of Dalian University of Technology, 2014, 54(1):54-59. (in Chinese)
[6] 邢海瑞, 朱明, 崔跃, 等. Ti-Ni合金血管支架的有限元分析及疲劳性能研究[J]. 稀有金属, 2016, 40(10):976-981. Xing Hairui, Zhu Ming, Cui Yue, et al. Finite element analysis and fatigue properties of Ti-Ni vascular stent[J]. Chinese Journal of Rare Metals, 2016, 40(10):976-981. (in Chinese)
[7] Dong Bin Kim, Hyuk Choi, Sang Min Joo, et al. A comparative reliability and performance study of different stent designs in terms of mechanical properties:foreshortening, recoil, radical force, and flexibility[J]. Artificial Organs, 2013, 37(4):368-379.
[8] 江旭东, 滕晓艳, 史冬岩, 等. 冠脉血管支架介入耦合系统力学行为数值模拟研究[J]. 工程力学, 2016, 33(8):231-237. Jiang Xudong, Teng Xiaoyan, Shi Dongyan, et al. Mechanical analysis on treatment of vetebral stenosis by stents with different links[J]. Engineering Mechanics, 2016, 33(8):231-237. (in Chinese)
[9] Sanjay Pant, Neil W, Bressloff, et al. The influence of strut-connectors in stented vessels:a comparison of pulsatile flow through five coronary stents[J]. Annals of Biomedical Engineering, 2010, 38(5):1893-1907.
[10] Qiao A, Zhang Z. Numerical simulation of vertebral artery stenosis treated with different stents[J]. Journal of Biomechanical Engineering, 2014, 136(4):1274-1283.
[11] Misagh Imani, Ali M Goudaarzi, Davood D Ganji, et al. The comprehensive finite element model for stenting:the influence of stent design on the outcome after coronary stent placement[J]. Journal of Theoretical and Applied Mechanics, 2013, 51(3):639-648.
[12] Ling Wei, Qiang Chen, Zhiyong Li. Study on the impact of straight stents on arteries with different curvatures[J]. Journal of Mechanics in Medicine and Biology, 2016, 16(7):1-14.
[13] Zhao S, Gu L, Froemming S R. Finite element analysis of the implantation of a self-expanding stent:impact of lesion calcification[J]. Journal of Medical Devices, 2012, 6(2):211-214.
[14] Alireza Karimi, Mahdi Navidbakhsh, Reza Razaghi. A finite study of balloon expandable stent for plaque and arterial vulnerability assessment[J]. Journal of Applied Physics, 2014, 116(4):044701.
[15] 高云亮, 缪卫东, 冯昭伟, 等. 几何参数对Ti-Ni合金血管支架支撑性能的影响[J]. 稀有金属, 2017, 41(8):936-942. Gao Yunliang, Miao Weidong, Feng Shaowei, et al. Ti-Ni alloy vascular stents' supporting performance with different design geometric parameters[J]. Chinese Journal of Rare Metals, 2017, 41(8):936-942. (in Chinese)
[16] Hongxia Li, Xicheng Wang. Design optimization of balloon-expandable coronary stent[J]. Structural Multidisciplinary Optimization, 2013, 48(4):837-847.
[17] Liu Q. Concept design of cardiovascular stents based on load identification[J]. Journal of the Institution of Engineers, 2015, 96(2):99-105.
[18] Muhammad Farhan Khan, David Brackett, Ian Ashcroft, et al. A novel approach to design lesion-specific stents for minimum recoil[J]. Journal of Medical Devices, 2017, 11(3):1-10. (上接第238页)
[25] Sam Y M, Osman J H S, Ghani M R A. A class of proportional-integral sliding mode control with application to active suspension system[J]. Systems and Control Letters, 2004, 51(3):217-223.
[26] Chen P C, Huang A C. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings[J]. Journal of Sound and Vibration, 2005, 282(3):1119-1135.
[27] Lin J, Lian R J, Huang C N, et al. Enhanced fuzzy sliding mode controller for active suspension systems[J]. Mechatronics, 2009, 19(7):1178-1190.
[28] Deshpande V S, Mohan B, Shendge P D, et al. Disturbance observer based sliding mode control of active suspension systems[J]. Journal of Sound and Vibration, 2014, 333(11):2281-2296.
[29] 王威, 宋玉玲, 王体春, 等. 非确定因素下汽车半主动悬架的智能控制[J]. 工程力学, 2012, 29(9):337-342. Wang Wei, Song Yuling, Wang Tichun, et al. Intelligent control of automotive semi-active suspension with uncertain factors[J]. Engineering Mechanics, 2012, 29(9):337-342. (in Chinese)
[30] 张丽萍, 弓栋梁. 基于H2/H控制的汽车主动悬架被动容错控制[J]. 汽车技术, 2017(11):44-49. Zhang Liping, Gong Dongliang. Passive fault-tolerant control for vehicle active suspension system based on H2/H control[J]. Automobile Technology, 2017(11):44-49. (in Chinese)
[31] Feng G. A survey on analysis and design of model-based fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(5):676-697.
[32] Choi H D, Ahn C K, Shi P, et al. Dynamic output-feedback dissipative control for T-S fuzzy systems with time-varying input delay and output constraints[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(3):511-526.
[33] Sun W, Pan H, Gao H. Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6):4619-4626.
[34] Du H, Zhang N. Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(2):343-356.
[35] 王威, 薛彦冰, 宋玉玲, 等. 基于GA优化控制规则的汽车主动悬架模糊PID控制[J]. 振动与冲击, 2012, 31(22):157-162. Wang Wei, Xue Yanbing, Song Yuling, et al. Fuzzy-PID control strategy for an active suspension based on optimal control laws with genetic algorithm[J]. Journal of Vibration and Shock, 2012, 31(22):157-162. (in Chinese)
[36] Liu S, Zhou H, Luo X, et al. Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems[J]. Journal of the Franklin Institute, 2016, 353(1):180-199.
[1] 任晓丹, 范伟达. 基于损伤模型的钢筋混凝土梁剪切破坏全过程分析[J]. 工程力学, 2017, 34(增刊): 139-142,148.
[2] 江旭东, 滕晓艳, 史冬岩, 张永锋. 冠脉血管支架介入耦合系统力学行为数值模拟研究[J]. 工程力学, 2016, 33(8): 231-237.
[3] 马尤苏夫,王先铁,周清汉,王连坤. 穿芯高强螺栓-端板节点方钢管混凝土框架抗震性能数值分析[J]. 工程力学, 2015, 32(2): 154-162.
[4] 施兴华,杭岑,嵇春艳,石晓彦. 带有初始缺陷船用加筋板极限强度的不确定性分析[J]. 工程力学, 2015, 32(2): 221-226.
[5] 李帼昌, 孙卿, 郭晓龙, 范宗帅. T型钢连接的方钢管柱-H型钢梁半刚性节点滞回性能的有限元分析[J]. 工程力学, 2014, 31(增刊): 32-35.
[6] 胡郑州, 吴明儿. 考虑剪切效应三维纤维梁单元的几何非线性增量有限元分析[J]. 工程力学, 2014, 31(8): 134-143.
[7] 赫中营,叶爱君. 力法非线性梁柱单元的合理单元长度划分[J]. 工程力学, 2014, 31(7): 178-184,189.
[8] 聂建国,丁然,樊健生. 超高层建筑伸臂桁架-核心筒剪力墙节点受力性能数值与理论研究[J]. 工程力学, 2014, 31(1): 46-55.
[9] 宗周红,程怡,黄学漾,林于东. CFRP板加固RC&PPC梁抗剪性能试验研究[J]. 工程力学, 2013, 30(6): 236-246.
[10] 樊星,袁奇,高进,余沛坰. 超临界机组给水泵汽轮机挠性支承结构稳定性计算与实验研究[J]. 工程力学, 2013, 30(4): 410-416.
[11] 王 喆,李宏男. 填充粘弹性材料剪力墙结构非线性有限元分析[J]. 工程力学, 2013, 30(1): 126-133.
[12] 黄景华, 陈朝晖, 马东升, 李观宇. 简支矩形深受弯箱梁静力性能试验研究[J]. 工程力学, 2012, 29(增刊I): 46-52.
[13] 李萍萍, 张若京. 具有周期结构的血管支架有限元分析[J]. 工程力学, 2012, 29(9): 369-374.
[14] 秦武, 杜成斌. 基于CT切片的三维混凝土细观层次力学建模[J]. 工程力学, 2012, 29(7): 186-193.
[15] 杨明;黄侨;马文刚;黄志伟. 波纹钢腹板体外预应力箱梁混凝土块式转向装置力学性能研究[J]. 工程力学, 2012, 29(2): 185-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日