工程力学 ›› 2019, Vol. 36 ›› Issue (3): 203-213,223.doi: 10.6052/j.issn.1000-4750.2017.12.0973

• 土木工程学科 • 上一篇    下一篇

钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究

黄云, 张清华, 郭亚文, 卜一之   

  1. 西南交通大学桥梁工程系, 四川, 成都 610031
  • 收稿日期:2017-12-25 修回日期:2018-07-19 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 张清华(1975-),男,河南虞城人,教授,博士,博导,主要从事高性能钢结构与钢-混组合结构桥梁研究(E-mail:swjtuzqh@126.com). E-mail:swjtuzqh@126.com
  • 作者简介:黄云(1985-),男,云南富民人,博士生,主要从事高性能钢结构与钢-混组合结构桥梁研究(E-mail:civilhy@163.com);郭亚文(1993-),男,河南鹿邑人,硕士生,主要从事高性能钢结构与钢-混组合结构桥梁研究(E-mail:yawenguoguo@163.com);卜一之(1961-),男,北京人,教授,博士,博导,主要从事高性能钢结构与钢-混组合结构桥梁研究(E-mail:yizhibu@163.com)
  • 基金资助:
    国家自然科学基金项目(51778533; 51578455);国家科技支撑计划项目(2006BAG04B03);湖北省交通运输厅科技项目(2017-538-2-4)

RESEARCH ON SURFACE DEFECTS AND FATIGUE EFFECTS AT RIB-TO-CROSSBEAM WELDED JOINTS OF ORTHOTROPIC STEEL BRIDGE DECKS

HUANG Yun, ZHANG Qing-hua, GUO Ya-wen, BU Yi-zhi   

  1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2017-12-25 Revised:2018-07-19 Online:2019-03-29 Published:2019-03-16

摘要: 初始焊接缺陷是影响结构件疲劳性能的关键因素之一。在断裂力学评估框架下引入特征化初始焊接缺陷,结合相互作用积分法与复合断裂准则解决由表面缺陷所导致的复合型疲劳裂纹扩展问题,在此基础上编写裂纹扩展模拟程序,建立表面焊接缺陷效应评价方法,通过分析揭示了不同形态和尺度的初始焊接缺陷对于钢桥面板纵肋与横隔板构造细节裂纹扩展关键性度量指标和疲劳寿命预测的影响。结果表明:所建立的方法可有效用于评估焊趾部位表面焊接缺陷对于疲劳性能的效应;面状缺陷对于裂纹扩展度量指标和疲劳寿命预测结果的影响更为显著,其初始缺陷深度和形态均是影响疲劳性能的关键因素,体积型缺陷对于疲劳寿命的影响主要由深度方向的缺陷尺寸决定;焊接缺陷的形态和几何参数取值应根据工程实际和规范建议值共同确定,直接简化为面状缺陷会低估结构件的疲劳寿命;考虑焊接缺陷不确定性的可靠度评估方法尚需进一步研究。

关键词: 钢桥面板, 焊接缺陷, 纵肋横隔板构造细节, 断裂力学, 应力强度因子, 疲劳寿命预测, 疲劳裂纹扩展

Abstract: The initial weld defect is one of the key factors which have major influences on the fatigue performance of structures and components. Characteristic initial weld defects were introduced into the fracture mechanics evaluation framework, the interaction energy integral method and mixed-mode fracture criterion were adopted to address the fatigue crack propagation caused by surface defects. On this basis, an analytical approach, which can assess the impact of surface defects on fatigue, was established by means of writing a program of simulating fatigue crack growth. Detailed analysis was carried out to reveal the effects of initial weld defects with different shapes and dimensions on the key indices of crack propagation and fatigue life prediction at the rib-to-crossbeam welded joints of orthotropic steel bridge decks. The results indicate that the proposed approach can be effectively applied to evaluate the influences of surface weld defects on the fatigue properties of weld toes. Planar defects have more remarkable influences on the evaluation indices of crack propagation and of predicted fatigue life; initial depth and shape are both critical factors that have a significant impact on fatigue performance;and the influences of volumetric weld defects are mainly controlled by the size in the depth direction. The shape and geometric parameter values of initial weld defects should be determined according to engineering practice and recommended values from specifications, and the fatigue life could be underestimated if all the defects are roughly simplified as planar defects. Further research should be dedicated to the reliability assessment method considering the uncertainty of weld defects.

Key words: orthotropic steel bridge deck, weld defect, rib-to-crossbeam welded joint, fracture mechanics, stress intensity factor, fatigue life prediction, fatigue crack propagation

中图分类号: 

  • U443.31
[1] Fisher J W. Fatigue and fracture in steel bridges:case studies[M]. New York:John Wiley & Sons, 1984:1.
[2] Gurney T R. Fatigue of welded structures[M]. Cambridge:Cambridge University Press, 1979.
[3] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3):14-30, 39. Zhang Qinghua, Bu Yizhi, Li Qiao. Review on fatigue research of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3):14-30, 39. (in Chinese)
[4] 黄云. 基于损伤力学的正交异性板疲劳裂纹形成寿命研究[D]. 成都:西南交通大学, 2013. Huang Yun. Fatigue crack initiation life prediction of orthotropic steel decks based on damage mechanics[D]. Chengdu:Southwest Jiaotong University, 2013. (in Chinese)
[5] Guerchais R, Morel F, Saintier N. Effect of defect size and shape on the high-cycle fatigue behavior[J]. International Journal of Fatigue, 2017, 100:530-539.
[6] BS7910, Guide on methods for assessing the acceptability of flaws in metallic structures[S]. London:British Standard Institution, 2013.
[7] BS7608, Guide to fatigue design and assessment of steel products[S]. London:British Standard Institution, 2014.
[8] Hobbacher A F. Recommendations for fatigue design of welded joints and components[M]. Switzerland:Springer International Publishing, 2016.
[9] Radaj D, Sonsino C M, Fricke W. Fatigue assessment of welded joints by local approaches[M]. Cambridge:Woodhead Publishing, 2006.
[10] Maddox S J. Assessing the significance of flaws in welds subject to fatigue[J]. Welding Research Supplement, 1974, 53(9):401-409(s).
[11] Moore P, Booth G. The welding engineer's guide to fracture and fatigue[M]. Cambridge:Woodhead Publishing, 2014.
[12] Wang G, Liao T W. Automatic identification of different types of welding defects in radiographic images[J]. NDT & E International, 2002, 35(8):519-528.
[13] Murakami Y. Metal fatigue:effects of small defects and nonmetallic inclusions[M]. Oxford:Elsevier, 2002.
[14] 刘曦. 含焊接缺陷构件的疲劳试验研究[J]. 化工机械, 2012, 39(2):162-164. Liu Xi. Fatigue testing research of components with welding defects[J]. Chemical Engineering & Machinery, 2012, 39(2):162-164. (in Chinese)
[15] 沈士明, 刘曦, 戴树和. 焊缝中体积型缺陷的疲劳行为和评定[J]. 压力容器, 1995, 12(6):491-495. Shen Shiming, Liu Xi, Dai Shuhe. The fatigue behaviour and evaluation in welds of non-planar defect[J]. Pressure Vessel Technology, 1995, 12(6):491-495. (in Chinese)
[16] Xiang Y, Lu Z, Liu Y. Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I:Uniaxial loading[J]. International Journal of Fatigue, 2010, 32(2):341-349.
[17] 霍立兴. 焊接结构的断裂行为及评定[M]. 北京:中国建筑工业出版社, 2000. Huo Lixing. Fracture behavior and evaluation of welded structures[M]. Beijing:China Building Industry Press, 2000. (in Chinese)
[18] 王元清, 廖小伟, 周晖, 等. 基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究[J]. 工程力学, 2017, 34(5):42-51. Wang Yuanqing, Liao Xiaowei, Zhou Hui, et al. Safety assessment of steel structure components with crack defects with SINTAP-FAD method[J]. Engineering Mechanics, 2017, 34(5):42-51. (in Chinese)
[19] 周太全, 陈鸿天. 具初始裂纹钢桥梁焊接构件疲劳裂纹扩展和疲劳寿命计算[J]. 船舶力学, 2009, 13(1):91-99. Zhou Taiquan, Chen Hongtian. Fatigue crack growth and fatigue life evaluation for welded steel bridge members with initial crack[J]. Journal of Ship Mechanics, 2009, 13(1):91-99. (in Chinese)
[20] Petcher P A, Dixon S. Weld defect detection using PPM EMAT generated shear horizontal ultrasound[J]. NDT & E International, 2015, 74:58-65.
[21] Yau J F, Wang S S, Corten H T. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J]. Journal of Applied Mechanics, 1980, 47(2):335-341.
[22] Gosz M, Moran B. An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions[J]. Engineering Fracture Mechanics, 2002, 69(3):299-319.
[23] Anderson T L. Fracture mechanics:Fundamentals and applications[M]. Boca Raton:Chemical Rubber Company (CRC) Press, 1991.
[24] Moran B, Shih C F. Crack tip and associated domain integrals from momentum and energy balance[J]. Engineering Fracture Mechanics, 1987, 27(6):615-642.
[25] Aygül M, Al-Emrani M, Barsoum Z, et al. Investigation of distortion-induced fatigue cracked welded details using 3D crack propagation analysis[J]. International Journal of Fatigue, 2014, 64:54-66.
[26] Paris P C, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4):528-533.
[27] 宗亮, 施刚, 王元清, 等. WNQ570桥梁钢及其对接焊缝疲劳裂纹扩展性能试验研究[J]. 工程力学, 2016, 33(8):45-51. Zong Liang, Shi Gang, Wang Yuanqing, et al. Experimental study on fatigue crack behavior of bridge steel WNQ570 base metal and butt weld[J]. Engineering Mechanics, 2016, 33(8):45-51. (in Chinese)
[28] Sumi Y, Yang C, Hayashi S. Morphological aspects of fatigue crack propagation Part I-Computational procedure[J]. International Journal of Fracture, 1996, 82(3):205-220.
[29] JTG D64-2015, 公路钢结构桥梁设计规范[S]. 北京:人民交通出版社, 2015. JTD D64-2015, Specifications for design of highway steel bridge[S]. Beijing:China Communications Press, 2015. (in Chinese)
[1] 施洲, 张勇, 杨仕力, 蒲黔辉. 铁路正交异性桥面加劲肋-横隔板局部疲劳受力特性研究[J]. 工程力学, 2019, 36(2): 124-133.
[2] 王综轶, ZHANG Yun-feng, 王元清, 杜新喜, 袁焕鑫. 交通信号支撑结构疲劳裂纹扩展有限元分析[J]. 工程力学, 2018, 35(9): 180-187.
[3] 曹磊, 陈伯望. 胶合木梁抗剪性能研究综述[J]. 工程力学, 2018, 35(6): 1-5,14.
[4] 尹飞, 周晖, 王元清, 廖小伟, 杨璐. A572 Gr.50厚板对接焊缝断裂性能研究[J]. 工程力学, 2018, 35(6): 42-51.
[5] 王珊. 基于Kirchhoff板中裂纹尖端辛本征解的有限元应力恢复方法[J]. 工程力学, 2018, 35(5): 10-16.
[6] 牛彦泽, 徐业鹏, 黄丹. 双轴动载作用下脆性裂纹扩展问题的近场动力学建模与分析[J]. 工程力学, 2018, 35(10): 249-256.
[7] 廖小伟, 王元清, 石永久, 陈宏. 低温环境下桥梁钢Q345qD疲劳裂纹扩展行为研究[J]. 工程力学, 2018, 35(10): 85-91.
[8] 关鹏涛, 闾川阳, 唐夏焘, 朱建伟, 丁振宇, 高增梁. Q345R钢多个过载作用下疲劳裂纹扩展行为研究[J]. 工程力学, 2017, 34(7): 224-231,240.
[9] 平学成, 吴卫星, 陈梦成, 程里朋. 铆接界面端三维奇异性应力场的研究[J]. 工程力学, 2017, 34(6): 226-235.
[10] 王元清, 廖小伟, 周晖, 石永久, 陈健陵, 叶国平. 基于SINTAP-FAD方法的含裂纹缺陷钢结构构件安全性评定研究[J]. 工程力学, 2017, 34(5): 42-51.
[11] 秦洪远, 黄丹, 刘一鸣, 章青. 基于改进型近场动力学方法的多裂纹扩展分析[J]. 工程力学, 2017, 34(12): 31-38.
[12] 李戎, 梁斌, NODA Nao-Aki. 基于临界应力强度因子的胶接对接接头抗拉强度简便预测方法[J]. 工程力学, 2017, 34(11): 218-224.
[13] 黄凯, 尹函彬, 孙庆平. 红外热像技术测量I型裂纹应力强度因子的研究[J]. 工程力学, 2017, 34(11): 231-239.
[14] 刘学聪, 章青, 夏晓舟. 一种新型裂尖加强函数的显式动态扩展有限元法[J]. 工程力学, 2017, 34(10): 10-18.
[15] 宗亮, 施刚, 王元清, 廖小伟, 于兴哲. WNQ570桥梁钢及其对接焊缝疲劳裂纹扩展性能试验研究[J]. 工程力学, 2016, 33(8): 45-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日