工程力学 ›› 2019, Vol. 36 ›› Issue (3): 192-202.doi: 10.6052/j.issn.1000-4750.2017.12.0972

• 土木工程学科 • 上一篇    下一篇

外包钢板-高延性混凝土组合连梁抗震性能试验研究

邓明科1, 吕浩1, 宋恒钊1,2   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 上海宝冶建筑设计研究院, 上海 200941
  • 收稿日期:2017-12-25 修回日期:2018-07-24 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 邓明科(1979-),男,四川南充人,教授,工学博士,博导,从事高性能材料与新型结构体系研究(E-mail:dengmingke@126.com). E-mail:dengmingke@126.com
  • 作者简介:吕浩(1986-),男,河南开封人,博士生,从事高性能土木工程材料研究(E-mail:lvhao2017@126.com);宋恒钊(1990-),男,江苏南京人,助理工程师,硕士,从事高性能土木工程材料研究(E-mail:953699231@qq.com)
  • 基金资助:
    国家自然科学基金项目(51578445)

EXPERIMENTAL RESEARCH ON ASEISMIC BEHAVIOR OF HIGH DUCTILE CONCRETE FILLED STEEL PLATE COMPOSITE COUPLING BEAMS

DENG Ming-ke1, LÜ Hao1, SONG Heng-zhao1,2   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and technology, Xi'an 710055, China;
    2. Shanghai Baoye Institute of Architectural Design, Shanghai 200941, China
  • Received:2017-12-25 Revised:2018-07-24 Online:2019-03-29 Published:2019-03-16

摘要: 为改善小跨高比连梁的抗震性能,采用高延性混凝土(HDC)代替混凝土,设计了2个外包钢板-HDC组合连梁、1个外包钢板-混凝土组合连梁和1个内置钢板-HDC组合连梁试件。通过拟静力试验,研究其破坏形态、变形能力及耗能能力。试验结果表明:采用HDC代替混凝土可提高外包钢板组合连梁的变形能力和耐损伤能力;HDC与钢腹板的协同工作性能较好,有利于钢腹板抗剪作用的发挥;外包钢板-HDC组合连梁的耗能能力明显高于外包钢板-混凝土组合连梁和内置钢板组合连梁;外包钢板-HDC组合连梁的剪压比设计值为0.65~0.70,其剪压比明显高于内置钢板组合连梁。因此,采用外包钢板-HDC组合连梁,可提高小跨高比连梁的剪压比限值,解决连梁设计中剪压比超限的问题。

关键词: 高延性混凝土, 外包钢板-混凝土组合连梁, 小跨高比, 拟静力试验, 抗震性能

Abstract: To improve the aseismic behavior of coupling beams with a small span-to-depth ratio, high ductile concrete (HDC) is used to replace the concrete. Two HDC filled steel plate composite coupling beams, one concrete filled steel plate composite coupling beam and one HDC steel plate composite coupling beam, were designed. The failure pattern, deformation capacity and energy dissipation capacity of composite coupling beams were studied by the quasi-static tests. The experimental results show that the deformability and damage-tolerance of the steel plate composite coupling beams can be improved by replacing concrete with HDC. The synergistic performance of HDC and steel webs is good, which is beneficial to the shear effect of steel webs. The energy dissipation of the HDC filled steel plate composite coupling beams is significantly higher than those of the concrete filled steel plate composite coupling beam and of the HDC steel plate composite coupling beam. The design values of shear-compression ratio of the HDC filled steel plate composite coupling beams is 0.65-0.70, which is obviously higher than that of the HDC steel plate composite coupling beam. Therefore, the shear-compression ratio limitation of the coupling beams can be improved by using the HDC filled steel plate composite coupling beams, and the problem of shear-pressure ratio ultra-limit of coupling beam in design can be solved.

Key words: high ductile concrete, concrete filled steel plate composite coupling beam, small span-to-depth ratio, quasi-static test, seismic behavior

中图分类号: 

  • TU398.9
[1] Paulay T, Binney J R. Diagonally reinforced coupling beams of shear walls[J]. ACI Special Publication, 1974, 42:579-598.
[2] 孙占国, 林宗凡, 戴瑞同. 菱形配筋剪内墙连梁的受力性能[J]. 建筑结构学报, 1994, 15(5):14-23. Sun Zhanguo, Lin Zongfan, Dai Ruitong. Behavior of coupling beams of shear wall reinforced with inclined rhomboidal bars[J]. Journal of Building Structures, 1994, 15(5):14-23. (in Chinese)
[3] Paulay T. Seismic design in reinforced concrete:The state of the art in New Zealand[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1988, 21(3):208-233.
[4] Mai-Quang K, Han S W, Shin M, et al. Reduction of reinforcement congestion in slender coupling beam using bundled diagonal bars[J]. Magazine of Concrete Research, 2017, 69(22):1-13.
[5] 傅剑平, 皮天祥, 韦锋, 等. 钢筋混凝土联肢墙小跨高比复合斜筋连梁抗震性能试验研究[J]. 土木工程学报, 2011, 44(2):57-64. Fu Jianping, Pi Tianxiang, Wei Feng, et al. Experimental study on seismic behaviors of small-aspect-ratio coupling beams in RC structural walls proportioned with combined slanting reinforcements[J]. China Civil Engineering of Journal, 2011, 44(2):57-64. (in Chinese)
[6] 梁兴文, 李方圆, 张涛, 等. 新配筋方案小跨高比连梁抗震性能试验研究[J]. 工程力学, 2009, 26(12):119-126. Liang Xingwen, Li Fangyuan, Zhang Tao, et al. Experimental study on seismic behaviour of new reinforcement scheme deep coupling beams[J]. Engineering Mechanics, 2009, 26(12):119-126. (in Chinese)
[7] 李贤, 夏承柱, 沙士钰, 等. 小跨高比钢-混凝土组合连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(增刊1):337-342. Li Xian, Xia Chengzhu, Sha Shiyu, et al. Experimental study on seismic behavior of deep steel-concrete composite coupling beams[J]. Journal of Building Structure, 2015, 36(Suppl 1):337-342. (in Chinese)
[8] Lam W Y, Su R, Pam H J. Experimental study on embedded steel plate composite coupling beams[J]. Journal of Structural Engineering-ASCE, 2005, 131(8):1294-1302.
[9] Su R, Pam H J, Lam W Y. Effects of shear connectors on plate-reinforced composite coupling beams of short and medium-length spans[J]. Journal of Constructional Steel Research, 2006, 62(1/2):178-188.
[10] Su R, Lam W Y, Pam H J. Behavior of embedded steel plate in composite coupling beams[J]. Journal of Constructional Steel Research, 2008, 64(10):1112-1128.
[11] 张刚. 钢板-混凝土连梁抗震性能的试验研究[D]. 北京:清华大学, 2005. Zhang Gang. Experimental study on seismic behavior of steel plate reinforced concrete coupling beams[D]. Beijing:Tsinghua University, 2005. (in Chinese)
[12] 史庆轩, 田建勃, 王秋维, 等. 小跨高比钢板-混凝土组合连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(2):104-114. Shi Qingxuan, Tian Jianbo, Wang Qiuwei, et al. Experimental research on seismic behavior of plate-reinforced composite coupling beam with small span-to-depth ratio[J]. Journal of Building Structure, 2015, 36(2):104-114. (in Chinese)
[13] 田建勃, 史庆轩, 王南, 等. 基于软化拉-压杆模型的小跨高比钢板-混凝土组合连梁受剪承载力分析[J]. 工程力学, 2016, 33(5):142-149. Tian Jianbo, Shi Qingxuan, Wang Nan, et al. Shear strength of plate-reinforced composite coupling beams with small span-to-depth ratio using softened strut-and-tie model[J]. Engineering Mechanics, 2016, 33(5):142-149. (in Chinese)
[14] 聂建国, 胡红松. 外包钢板-混凝土组合连梁试验研究(I):抗震性能[J]. 建筑结构学报, 2014, 35(5):1-9. Nie Jianguo, Hu Hongsong. Experimental research on concrete filled steel plate composite coupling beams (I):Seismic behavior[J]. Journal of Building Structures, 2014, 35(5):1-9. (in Chinese)
[15] 寇佳亮, 邓明科, 梁兴文. 延性纤维增强混凝土单轴拉伸性能试验研究[J]. 建筑结构, 2013(1):59-64. Kou Jialiang, Deng Mingke, Liang Xingwen. Experimental study of uniaxial tensile properties of ductile fiber reinforced concrete[J]. Building Structure, 2013, 43(1):59-64. (in Chinese)
[16] 邓明科, 孙宏哲, 梁兴文, 等. 延性纤维混凝土抗弯性能的试验研究[J]. 工业建筑, 2014, 44(5):85-90. Deng Mingke, Sun Hongzhe, Liang Xingwen, et al. Experimental study of flexural behavior of ductile fiber reinforced concrete[J]. Industrial Construction, 2014, 44(5):85-90. (in Chinese)
[17] 邓明科, 秦萌, 梁兴文. 高延性纤维混凝土抗压性能试验研究[J]. 工业建筑, 2015, 45(4):120-126. Deng Mingke, QinMeng, Liang Xingwen. Experimental study of compressive behavior of high ductility fiber reinforced concrete[J]. Industrial Construction, 2015, 45(4):120-126. (in Chinese)
[18] LI Victor C. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报, 2007, 35(4):531-536. Li Victor C. Process and application of engineered cementations composites[J]. Journal of the Chinese Ceramic Society, 2007, 35(4):531-536. (in Chinese)
[19] Li V C, Wang S, Wu C. Tensile strain-hardening behavior of PVA-ECC[J]. ACI Material Journal, 2001, 98(6):483-492.
[20] 徐世烺, 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究[J]. 土木工程学报, 2009, 42(9):32-41. Xu Shilang, Li Hedong. Uniaxial tensile experiments of ultra-high toughness cementitious composite[J]. China Civil Engineering of Journal, 2009, 42(9):32-41. (in Chinese)
[21] 梁兴文, 车佳玲, 邓明科. 对角斜筋小跨高比纤维增强混凝土连梁抗震性能试验研究[J]. 建筑结构学报, 2013, 34(8):135-141.Liang Xingwen, Che Jialing, Deng Mingke. Experimental research on seismic behavior of diagonally reinforced FRC coupling beams with small span-to-depth ratio[J]. Journal of Building Structure, 2013, 34(8):135-141. (in Chinese)
[22] 梁兴文, 邢朋涛, 刘贞珍, 等. 小跨高比纤维增强混凝土连梁抗震性能试验及受剪承载力研究[J]. 建筑结构学报, 2016, 37(8):48-57. Liang Xingwen, Xing Pengtao, Liu Zhenzhen, et al. Experimental study on seismic behavior and shear capacity of FRC coupling beams with small span-to-depth ratio[J]. Journal of Building Structure, 2016, 37(8):48-57. (in Chinese)
[23] 梁兴文, 刘贞珍, 邢朋涛, 等. 纤维增强混凝土对角斜筋小跨高比连梁抗震性能试验研究及受剪承载力分析[J]. 土木工程学报, 2017, 50(2):27-35. Liang Xingwen, Liu Zhenzhen, Xing Pengtao, et al. Experimental study on seismic behavior and shear capacity of diagonally reinforced fiber-reinforced concrete coupling beams with small span-to-depth ratio[J]. China Civil Engineering Journal, 2017, 50(2):27-35. (in Chinese)
[24] DBJ61/T112-2016, 高延性混凝土应用技术规程[S]. 北京:中国建筑工业出版社, 2016. DGJ61/T112-2016, Technical specification for application of high ductile concrete[S]. Beijing:China Architecture and Building Press, 2016. (in Chinese)
[25] 姚谦峰, 陈平. 土木工程结构试验[M]. 北京:中国建筑工业出版社, 2001:220. Yao Qianfeng, Chen Ping. Structural test of civil engineering[M]. Beijing:China Architecture and Building Press, 2001:220. (in Chinese)
[26] JGJ/T 101-2015, 建筑抗震试验规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 101-2015, Specification for seismic test of building[S]. Beijing:China Architecture and Building Press, 2015. (in Chinese)
[1] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[2] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[3] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[4] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[5] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[6] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[7] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[8] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[9] 朱柏洁, 张令心, 王涛. 轴力作用下剪切钢板阻尼器力学性能试验研究[J]. 工程力学, 2018, 35(S1): 140-144.
[10] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[11] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[12] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[13] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[14] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[15] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日