工程力学 ›› 2019, Vol. 36 ›› Issue (2): 45-52.doi: 10.6052/j.issn.1000-4750.2017.12.0971

• 土木工程学科 • 上一篇    下一篇

一种索穹顶结构初始预应力分布确定的新方法—预载回弹法

向新岸1,2, 冯远1, 董石麟2   

  1. 1. 中国建筑西南设计研究院有限公司, 成都 610041;
    2. 浙江大学 空间结构研究中心, 杭州 310058
  • 收稿日期:2017-12-23 修回日期:2018-06-04 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 向新岸(1983-),男,四川成都人,高工,博士,主要从事大跨空间结构的工程实践及科研工作(E-mail:spacexxa@163.com). E-mail:spacexxa@163.com
  • 作者简介:冯远(1961-),女,四川成都人,教授级高工,全国工程勘察设计大师,学士,总工程师,长期从事大跨空间结构的工程实践及科研工作(E-mail:xnyfy@vip.163.com);董石麟(1932-),男,浙江杭州人,教授,博导,中国工程院院士,长期从事空间结构的科研、教学与工程实践工作.
  • 基金资助:
    国家重点研发计划项目(2016YFC0701204);国家自然科学基金项目(51678550);中国建筑股份有限公司科研项目(CSCEC-2015-Z-43)

A NEW METHOD OF DETERMINING THE INITIAL PRESTRESS DISTRIBUTION OF CABLE DOMES—THE PRELOAD AND REBOUND METHOD

XIANG Xin-an1,2, FENG Yuan1, DONG Shi-lin2   

  1. 1. China Southwest Architectural Design and Research Institute Corp. LTD, Chengdu 610041, China;
    2. Space Structures Research Center, Zhejiang University, Hangzhou 310058, China
  • Received:2017-12-23 Revised:2018-06-04 Online:2019-02-22 Published:2019-02-22

摘要: 对索穹顶结构初始预应力分布的确定进行了研究,提出一种新方法—预载回弹法。该方法首先对索穹顶施加一个预设荷载,提取有利于抵抗预设荷载的内力分布。将该组内力作为预应力施加至结构上,并撤除预载,使结构回弹,通过两阶段变弹性模量迭代计算,收敛后可获得索穹顶结构的整体可行预应力分布。该方法通过施加对称荷载,即可自动实现单元的分组,便于整体可行预应力的判定,并可直接获得多自应力模态结构的优化初始预应力分布。通过算例证明预载回弹法具有很高的精度、较快的收敛速度,求得的整体可行预应力分布直接适用于实际工程应用。

关键词: 索穹顶, 初始预应力分布, 预载回弹, 内力分布, 迭代计算, 整体可行预应力

Abstract: The determination of the initial prestress distribution of cable domes is studied and a new method named the Preload and Rebound Method is proposed. A preload is applied to the cable dome first to get the internal force distribution which helps resist the preload. After the preload is removed, the internal force is then applied to the structure as prestress, making the structure rebound. Through the two-stage iterative calculation by using changing elastic modulus, the integrity feasible prestressing distribution of the cable dome is achieved after convergence. By applying a symmetric load, this method automatically groups the members and easily distinguishes the integrity feasible prestressing distribution. The optimized initial prestress distribution of the structure with multi-self-equilibrium stress modes is also directly gained. This method is proved to be accurate and converge fast by several examples. The integrity feasible prestressing distribution obtained through this method can be directly applied to engineering practice.

Key words: cable dome, initial prestress distribution, preload and rebound, internal force distribution, iterative calculation, integrity feasible prestressing

中图分类号: 

  • TU394
[1] Geiger D H, Stefaniuk A, Chen D. The design and construction of two cable domes for the Korea Olympics[C]//Proceedings of the IASS Symposium:Shells, Membranes and Space Frame. Osaka, 1986, 2:265-272.
[2] Levy M P. The Georgia dome and beyond achieving lightweight-long span structures[C]//Proceedings of the IASS-ASCE International Symposium:Spatial, Lattice and Tension Structures. New York, 1994:560-562.
[3] Pellegrino S, Calladine C R. Matrix analysis of statically and kinematically indaterminate frameworks[J]. International Journal of Solids and Structures, 1986, 22(4):409-428.
[4] Pellegrino S. Structural computations with the singular value decomposition of the equilibrium matrix[J]. International Journal of Solids and Structures, 1993, 30(21):3025-3035.
[5] 董石麟, 袁行飞. 肋环型索穹顶初始预应力分布的快速计算法[J]. 空间结构, 2003, 9(2):3-8, 19. Dong Shilin, Yuan Xingfei. A quick calculation method for initial prestress distribution of Geiger domes[J]. Spatial Structures, 2003, 9(2):3-8, 19. (in Chinese)
[6] 董石麟, 袁行飞. 葵花型索穹顶初始预应力分布的简捷算法[J].建筑结构学报, 2004, 25(6):9-14. Dong Shilin, Yuan Xingfei. A simplified calculation method for initial prestress distribution of sunflower-patterned cable domes[J]. Journal of Building Structures, 2004, 25(6):9-14. (in Chinese)
[7] 董石麟, 王振华, 袁行飞. Levy型索穹顶考虑自重的初始预应力简捷计算法[J]. 工程力学, 2009, 26(4):1-6. Dong Shilin, Wang Zhenhua, Yuan Xingfei. A simplified calculation method for initial prestress of Levy cable domes with the consideration of self-weight[J]. Engineering Mechanics, 2009, 26(4):1-6. (in Chinese)
[8] 袁行飞, 董石麟. 索穹顶结构整体可行预应力概念及其应用[J]. 土木工程学报, 2001, 34(2):33-37, 61. Yuan Xingfei, Dong Shilin. Application of integrity feasible prestressing to tensegrity cable domes[J]. China Civil Engineering Journal, 2001, 34(2):33-37, 61. (in Chinese)
[9] 袁行飞, 董石麟. 索穹顶结构的新形式及其初始预应力确定[J]. 工程力学, 2005, 22(2):22-26. Yuan Xingfei, Dong Shilin. New forms and initial prestress calculation of cable domes[J]. Engineering Mechanics, 2005, 22(2):22-26. (in Chinese)
[10] 曾文平, 王元清, 张勇, 等. 索穹顶结构的预应力设计方法[J]. 工业建筑, 2002, 32(9):24-26. Zeng Wenping, Wang Yuanqing, Zhang Yong, et al. The method of prestress design for cable dome[J]. Industrial Construction, 2002, 32(9):24-26. (in Chinese)
[11] 阚远, 叶继红. 动力松弛法在索穹顶结构形状确定中的应用[J]. 工程力学, 2007, 24(9):50-55. Kan Yuan, Ye Jihong. Form finding of cable domes by modified dynamic relaxation[J]. Engineering Mechanics, 2007, 24(9):50-55. (in Chinese)
[12] Schek H J. The force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(1):115-134.
[13] Barnes M R. Form finding and analysis of tension structures by dynamic relaxation[J]. International Journal of Space Structures, 1999, 14(2):89-104.
[14] 袁行飞, 董石麟. 索穹顶结构几何稳定性分析[J]. 空间结构, 1999, 5(1):3-9. Yuan Xingfei, Dong Shilin. Analysis of geometric stability for cable domes[J]. Spatial Structures, 1999, 5(1):3-9. (in Chinese)
[15] 陈联盟, 袁行飞, 董石麟. 索杆张力结构自应力模态分析及预应力优化[J]. 土木工程学报, 2006, 39(2):11-15. Chen Lianmeng, Yuan Xingfei, Dong Shilin. Selfstress mode analysis and optimal prestress design of cable-strut tension structures[J]. China Civil Engineering Journal, 2006, 39(2):11-15. (in Chinese) (上接第35页)
[25] 方平治. 大气边界层的数值模拟方法研究:修正的壁面函数[D]. 上海:同济大学, 2009. Fang Pingzhi. Study on the numerical simulation method of the atmospheric boundary layer:Modified wall function[D]. Shanghai:Tongji University, 2009. (in Chinese)
[26] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4):851-875.
[27] Detering H W, Etling D. Application of the E-ε turbulence model to the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1985, 33(2):113-133.
[28] Andrén A. A TKE-dissipation model for the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1991, 56(3):207-221.
[29] Duynkerke P G. Application of the E-ε turbulence closure model to the neutral and stable atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 1988, 45(5):865-880.
[30] Apsley D D, Castro I P. A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1997, 83(1):75-98.
[31] Xu D, Taylor P A. An E-ε-l turbulence closure scheme for planetary boundary-layer models:The neutrally stratified case[J]. Boundary-Layer Meteorology, 1997, 84(2):247-266.
[32] Sogachev A, Kelly M, Leclerc M Y. Consistent two-equation closure modelling for atmospheric research:Buoyancy and vegetation implementations[J]. Boundary-Layer Meteorology, 2012, 145(2):307-327.
[33] Lettau H. A re-examination of the "Leipzig Wind Profile" considering some relations between wind and turbulence in the frictional layer[J]. Tellus, 1950, 2(2):125-129.
[34] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 上海:同济大学出版社, 2008:110-113. Huang Bencai, Wang Congjun. Analysis principle and application of structural wind resistance[M]. Shanghai:Tongji University Press, 2008:110-113. (in Chinese)
[35] Grant A L M. Observations of boundary layer structure made during the 1981 KONTUR experiment[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473):825-841.
[36] Brost R A, Wyngaard J C, Lenschow D H. Marine stratocumulus layers. Part Ⅱ:Turbulence budgets[J]. Journal of the Atmospheric Sciences, 1982, 39(4):818-836.
[37] Esau I. Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure[J]. Environmental Fluid Mechanics, 2004, 4(3):273-303.
[38] 郑徳乾. 基于LES的结构风荷载及气弹响应数值模拟研究[D]. 上海:同济大学, 2011. Zheng Deqian. LES based simulation of wind loads and aeroelastic responses of structures[D]. Shanghai:Tongji University, 2011. (in Chinese)
[39] Kantha L, Bao J W, Carniel S. A note on Tennekes hypothesis and its impact on second moment closure models[J]. Ocean Modelling, 2005, 9(1):23-29.
[40] Katul G G, Mahrt L, Poggi D, et al. One-and two-equation models for canopy turbulence[J]. Boundary-Layer Meteorology, 2004, 113(1):81-109.
[41] Högström U L F. Review of some basic characteristics of the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1996, 78(3):215-246.
[42] Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289.
[1] 张爱林, 孙超, 姜子钦. 联方型双撑杆索穹顶考虑自重的预应力计算方法[J]. 工程力学, 2017, 34(3): 211-218.
[2] 陆金钰, 董霄, 李娜, 武啸龙. 环箍-穹顶索杆结构局部断索抗倒塌能力分析[J]. 工程力学, 2016, 33(增刊): 173-178.
[3] 陆金钰, 武啸龙, 赵曦蕾, 舒赣平. 基于环形张拉整体的索杆全张力穹顶结构形态分析[J]. 工程力学, 2015, 32(增刊): 66-71.
[4] 宗钟凌,郭正兴. 葵花型索穹顶结构力学性能及拉索破断试验研究[J]. 工程力学, 2013, 30(1): 271-276.
[5] 许 贤;罗尧治;沈雁彬. 张力结构的动态控制研究[J]. 工程力学, 2011, 28(5): 186-193.
[6] 宗钟凌;郭正兴. 刚性屋面索穹顶结构非线性数值分析[J]. 工程力学, 2009, 26(7): 134-139.
[7] 董石麟;王振华;袁行飞. Levy型索穹顶考虑自重的初始预应力简捷计算法[J]. 工程力学, 2009, 26(4): 1-006.
[8] 郭佳民;袁行飞;董石麟;赵宝军;楼道安. 弦支穹顶施工张拉全过程分析[J]. 工程力学, 2009, 26(1): 198-203.
[9] 阚 远;叶继红. 索穹顶结构施工成形及荷载试验研究[J]. 工程力学, 2008, 25(8): 0-211.
[10] 陈联盟;董石麟;袁行飞. 索穹顶结构施工成形理论分析[J]. 工程力学, 2008, 25(4): 0-139.
[11] 阚 远;叶继红. 动力松弛法在索穹顶结构形状确定中的应用[J]. 工程力学, 2007, 24(9): 0-055.
[12] 方 勇;何 川. 全长粘结式锚杆与隧道围岩相互作用研究[J]. 工程力学, 2007, 24(6): 0-116.
[13] 周小利;白象忠. 弹性圆柱薄壳在流体中的变形与内力分析[J]. 工程力学, 2007, 24(5): 0-052.
[14] 郑君华;袁行飞;董石麟. 两种体系索穹顶结构的破坏形式及其受力性能研究[J]. 工程力学, 2007, 24(1): 0-050.
[15] 袁行飞;董石麟. 索穹顶结构的新形式及其初始预应力确定[J]. 工程力学, 2005, 22(2): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日