工程力学 ›› 2019, Vol. 36 ›› Issue (3): 182-191.doi: 10.6052/j.issn.1000-4750.2017.12.0962

• 土木工程学科 • 上一篇    下一篇

高强钢组合K形偏心支撑钢框架抗震性能分析

田小红1,2, 苏明周1, 连鸣1, 李慎3, 王凤4   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 西安理工大学机械与精密仪器工程学院, 西安 710048;
    3. 西安理工大学土木建筑工程学院, 西安 710048;
    4. 兰州理工大学土木工程学院, 兰州 730050
  • 收稿日期:2017-12-19 修回日期:2018-04-16 出版日期:2019-03-29 发布日期:2019-03-16
  • 通讯作者: 苏明周(1971-),男,河南人,教授,博士,博导,主要从事钢结构稳定与抗震、新型结构体系受力性能和设计理论研究(E-mail:sumingzhou@163.com). E-mail:sumingzhou@163.com
  • 作者简介:田小红(1981-),女,辽宁人,讲师,博士,主要从事新型结构体系抗震性能研究(E-mail:tianxh2001@163.com);连鸣(1987-),男,山东人,讲师,博士,主要从事新型结构体系抗震性能研究(E-mail:lianming0821@163.com);李慎(1986-),男,山东人,讲师,博士,主要从事新型结构体系受力性能和设计理论研究(E-mail:lishen2861@163.com);王凤(1985-),女,河北人,讲师,博士,主要从事钢-混凝土组合结构、钢结构研究(E-mail:cewangf@gmail.com)
  • 基金资助:
    国家自然科学基金项目(51178382)

ANALYSIS OF ASEISMIC PERFORMANCE OF HIGH STRENGTH STEEL COMPOSITE K-ECCENTRICALLY BRACED FRAMES

TIAN Xiao-hong1,2, SU Ming-zhou1, LIAN Ming1, LI Shen3, WANG Feng4   

  1. 1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    2. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China;
    3. School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China;
    4. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2017-12-19 Revised:2018-04-16 Online:2019-03-29 Published:2019-03-16

摘要: 为了合理评估高强钢组合K形偏心支撑框架(K-HSS-EBFs)的抗震性能,首先建立了振动台试验试件的有限元模型,验证了有限元分析方法的适用性。设计了一个10层K-HSS-EBF结构,选取10条地震记录对其进行增量动力分析(IDA)。探讨了在强震作用下结构的薄弱部位、耗能梁塑性区的形成和发展、基底剪力和最大层间位移的关系,得到了结构概率分位值为10%、50%和90%的IDA曲线以及位移延性系数,结合定义的性能参数评估了结构的抗震性能。研究表明:随着地震动峰值加速度的增加,各层耗能梁先后进入塑性,并逐渐发展,吸收地震能量; K-HSS-EBFs的易损曲线能很好地反映其抗震性能;按《建筑抗震设计规范》设计的高强钢组合K形偏心支撑框架偏保守,能承受远大于设防烈度的地震作用,造成结构设计的浪费。

关键词: 高强钢, 偏心支撑, 增量动力分析, 抗震性能, 层间侧移角

Abstract: To evaluate the aseismic performance of high-strength steel composite eccentrically braced frames (K-HSS-EBFs), a finite element analysis of a shaking table test specimen was carried out. The simulated results are consistent with the test results, which proves the feasibility of the finite element method. A ten-story K-HSS-EBF was designed, and incremental dynamic analysis (IDA) was carried out with 10 seismic ground motions. The weak parts of the structure, the formation and development of the plastic zones of the link and the relationship between the base shear force and maximum story drift under the action of strong earthquakes were researched. The IDA curves of 10%, 50% and 90% fractiles and the displacement ductility coefficient were ascertained. The aseismic performance was assessed by combining it with the defined performance parameters. The results show that with the increase in the peak ground acceleration, the links successively entered the plastic state and absorbed the seismic energy. The collapse fragility curve can reflect the aseismic performance of the K-HSS-EBFs. The K-HSS-EBFs designed according to the current seismic code have the negligible risk of collapse and high security reserve, which will cause the waste of structural design.

Key words: high-strength steel, eccentrically brace, IDA, seismic performance, story drift angel

中图分类号: 

  • TU391
[1] 施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1):1-13. Shi Gang, Ban Huiyong, Shi Yongjiu, et al. Overview of research progress for high strength steel structures[J]. Engineering Mechanics, 2013, 30(1):1-13. (in Chinese)
[2] 罗永峰, 王熹宇, 强旭红, 等. 高强钢在工程结构中的应用进展[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(增刊1):134-141. Luo Yongfeng, Wang Xiyu, Qiang Xuhong, et al. Progress in application of high strength steel to engineering structures[J]. Journal of Tianjin University (Science and Technology), 2015, 48(Suppl 1):134-141. (in Chinese)
[3] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2):50-59. Shi Gang, Zhu Xi. Study on constitutive model of highstrength structural steel under monotonic loading[J]. Engineering Mechanics, 2017, 34(2):50-59. (in Chinese)
[4] 段留省, 苏明周, 郝麒麟, 等. 高强钢组合K形偏心支撑钢框架抗震性能试验研究[J]. 建筑结构学报, 2014, 35(7):18-25. Duan Liusheng, Su Mingzhou, Hao Qilin, et al. Experimental study on seismic behavior of high strength steel composite K-type eccentrically braced frames[J]. Journal of Building Structures, 2014, 35(7):18-25. (in Chinese)
[5] 段留省, 苏明周, 焦培培, 等. 高强钢组合Y形偏心支撑钢框架抗震性能试验研究[J]. 建筑结构学报, 2014, 35(12):89-96. Duan Liusheng, Su Mingzhou, Jiao Peipei, et al. Experimental study on seismic behavior of high strength steel composite Y-type eccentrically braced frames[J]. Journal of Building Structures, 2014, 35(12):89-96. (in Chinese)
[6] 李慎, 苏明周, 连鸣, 等. 多层高强钢组合K形偏心支撑钢框架抗震性能研究[J]. 土木工程学报, 2015, 48(10):38-47. Li Shen, Su Mingzhou, Lian Ming, et al. Seismic behavior of multi-storey high strength steel composite K-eccentrically braced steel frame[J]. China Civil Engineering Journal, 2015, 48(10):38-47. (in Chinese)
[7] Wang F, Su M Z, Hong M, et al. Cyclic behaviour of Y-shaped eccentrically braced frames fabricated with high-strength steel composite[J]. Journal of Constructional Steel Research, 2016, 120:176-187.
[8] Tian X H, Su M Z, Lian M, et al. Seismic behavior of K-shaped eccentrically braced frames with high-strength steel:Shaking table testing and FEM analysis[J]. Journal of Constructional Steel Research, 2018, 143:250-263.
[9] Lian M, Su M Z. Seismic performance of high-strength steel fabricated eccentrically braced frame with vertical shear link[J]. Journal of Constructional Steel Research, 2017, 137:262-285.
[10] 连鸣, 苏明周, 李慎. Y形高强钢组合偏心支撑框架结构基于性能的塑性设计方法研究[J]. 工程力学, 2017, 34(5):148-162. Lian Ming, Su Mingzhou. Li Shen. Performance-based plastic design method for Y-type high strength steel composite eccentrically braced frames[J]. Engineering Mechanics, 2017, 34(5):148-162. (in Chinese)
[11] 李慎, 苏明周. 基于性能的偏心支撑钢框架抗震设计方法研究[J]. 工程力学, 2014, 31(10):195-204. Li Shen, Su Mingzhou. A performance-based seismic design method for eccentrically braced steel frames[J]. Engineering Mechanics, 2014, 31(10):195-204. (in Chinese)
[12] 施刚, 石永久, 王元清. 运用ANSYS分析超高强度钢材钢柱整体稳定特性[J]. 吉林大学学报(工学版), 2009, 39(1):115-120. Shi Gang, Shi Yongjiu, Wang Yuanqing. Analysis on overall buckling behaviour of ultra-high strength steel columns by ANSYS[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(1):115-120. (in Chinese)
[13] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3):491-514.
[14] 汪梦甫, 汪志辉, 刘飞飞. 增量动力弹塑性分析方法的改进及其应用[J]. 地震工程与工程振动, 2012, 32(1):30-35. Wang Mengfu, Wang Zhihui, Liu Feifei. Improved method for incremental dynamic analysis and its application[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(1):30-35. (in Chinese)
[15] 韩淼, 那国坤. 基于增量动力法的剪力墙结构地震易损性分析[J]. 世界地震工程, 2011, 27(3):108-113. Han Miao, Na Guokun. Seismic fragility analysis of shear wall structure by using incremental dynamic method[J]. World Earthquake Engineering, 2011, 27(3):108-113. (in Chinese)
[16] FEMA-351, Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings[S]. Washington:Federal Emergency Management Agency (FEMA), 2000.
[17] 舒兴平, 曹福亮, 卢倍嵘, 等. 基于增量动力分析法的大跨度空间管桁架结构地震易损性分析[J]. 工业建筑, 2016, 46(3):108-112. Shu Xingping, Cao Fuliang, Lu Beirong, et al. Seismic fragility analysis of large-span spatial pipe-truss based on IDA method[J]. Industrial Construction, 2016, 46(3):108-112. (in Chinese)
[18] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3):491-514.
[19] Shome N, Cornell C A, Bazzurro P, et al. Earthquakes, records and nonlinear MDOF responses[J]. Earthquake Spectra, 1998, 14(3):469-500.
[20] Bommer J J, Acevedo A B. The use of real earthquake accelerograms as input to dynamic analysis[J]. Journal of Earthquake Engineering, 2004, 8(1):43-91.
[21] Zareian F, Krawinkler H. Assessment of probability of collapse and design for collapse safety[J]. Earthquake Engineering and Structure Dynamics, 2007, 36(13):1901-1914.
[1] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139-148.
[2] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105-113.
[3] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[4] 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23.
[5] 邓明科, 吕浩, 宋恒钊. 外包钢板-高延性混凝土组合连梁抗震性能试验研究[J]. 工程力学, 2019, 36(3): 192-202.
[6] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[7] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[8] 尚庆学, 李泽, 刘瑞康, 王涛. 管线系统抗震支架力学试验研究[J]. 工程力学, 2018, 35(S1): 120-125,133.
[9] 陈嵘, 雷俊卿. 变轴力钢筋混凝土墩柱抗震性能研究[J]. 工程力学, 2018, 35(S1): 239-245.
[10] 徐春一, 逯彪, 余希. 玻纤格栅配筋砌块墙体抗震性能试验研究[J]. 工程力学, 2018, 35(S1): 126-133.
[11] 张微敬, 张晨骋. 钢筋套筒挤压连接的预制RC柱非线性有限元分析[J]. 工程力学, 2018, 35(S1): 67-72.
[12] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[13] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[14] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[15] 张爱林, 张勋, 刘学春, 王琦. 钢框架-装配式两边连接薄钢板剪力墙抗震性能试验研究[J]. 工程力学, 2018, 35(9): 54-63,72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日