工程力学 ›› 2019, Vol. 36 ›› Issue (2): 177-185,223.doi: 10.6052/j.issn.1000-4750.2017.12.0943

• 土木工程学科 • 上一篇    下一篇

设备-结构-土体系振动台实时子结构试验方法探讨

姜忻良, 张崇祥, 姜南, 罗兰芳   

  1. 滨海土木工程结构与安全教育部重点实验室, 天津大学建筑工程学院, 天津 300072
  • 收稿日期:2017-12-12 修回日期:2018-03-20 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 姜忻良(1951-),男,浙江人,教授,博士,博导,主要从事土-结构相互作用研究(E-mail:jiangxinliang@126.com). E-mail:jiangxinliang@126.com
  • 作者简介:张崇祥(1987-),男,山东人,博士生,主要从事土-结构相互作用研究(E-mail:xcziby@tju.edu.cn);姜南(1980-),男,浙江人,博士生,副教授,博士,主要从事土-结构相互作用与结构抗震研究(E-mail:jiangnan@tju.edu.cn);罗兰芳(1988-),女,四川人,博士生,主要从事土-结构相互作用研究(E-mail:lanfangluo@tju.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51478312,51278335)

STUDY ON SHAKING TABLE REAL-TIME SUBSTRUCTURE EXPERIMENTAL METHODOLOGY OF EQUIPMENT-STRUCTURE-SOIL SYSTEM

JIANG Xin-liang, ZHANG Chong-xiang, JIANG Nan, LUO Lan-fang   

  1. Key Laboratory of Coastal Civil Engineering Structure and Safety, Ministry of Education, School of Civil Engineering, Tianjin University, Tianjin 300072, China
  • Received:2017-12-12 Revised:2018-03-20 Online:2019-02-22 Published:2019-02-22

摘要: 该文探讨了设备-结构-土体系振动台实时子结构试验方法的可行性,将设备-结构体系作为由振动台加载控制的试验子结构,同时将自由度缩减后的土体作为由仿真软件计算的数值子结构,试验时两者之间进行数据实时交互。首先基于分支模态子结构方法推导了设备-结构-线性土体系运动方程,并对各体系运动方程进行了变换,将其应用于设备-结构-线性土体系振动台实时子结构试验。然后结合土体在强震作用下并非全部进入非线性阶段的特点,提出采用局部非线性土模型作为数值子结构参与振动台实时子结构试验的思路,并应用分支模态子结构法与线性-非线性混合约束模态子结构法推导了设备-结构-局部非线性土体系的运动方程。设计了设备-结构-土相互作用缩尺模型,进行了各地震动作用下的设备-结构-线性土体系振动台实时子结构试验。通过比较振动台实时子结构试验结果与数值计算结果,发现两者之间吻合良好,证明该试验方法是可靠有效的。

关键词: 分支模态子结构, 试验子结构, 数值子结构, 振动台, 实时, 设备-结构-土

Abstract: The feasibility study about the shaking table real-time substructure experimental method of an equipment-structure-soil system is discussed. The equipment-structure system is adopted as an experimental substructure loaded by a shaking table. Meanwhile, a finite-element model of soil is adopted as a numerical substructure after the degrees of freedom reduction. Real-time data communication occurs between the two parts during test. Based on a branch modal substructure method, the motion equation of an equipment-structure-soil system is deduced. The equation is converted and applied to the substructure experiment. Considering that the soil does not entirely enter the nonlinear stage under strong earthquakes, the local nonlinear soil model can be used as a numerical substructure and the equation of motion for the equipment-structure-local nonlinear soil system is derived using the branch modal substructure method and linear-nonlinear hybrid constraint modal substructure method. An equipment-structure-soil interaction scale model is designed and tested using the experimental method under different earthquake records. A good agreement is observed upon the comparison of results between the experimental and numerical calculation methods, which corroborates the reliability and validity of the proposed testing method.

Key words: branch modal substructure, experimental substructure, numerical substructure, shaking table, real-time, equipment-structure-soil

中图分类号: 

  • TU317
[1] 姜忻良, 徐炳伟, 焦莹. 大型土-桩-复杂结构振动台模型试验研究[J]. 土木工程学报, 2010, 43(10):98-105. Jiang Xinliang, Xu Bingwei, Jiao Ying. Analysis of shaking table test of large-scale soil-pile-complex structure interaction[J]. China Civil Engineering Journal, 2010, 43(10):98-105. (in Chinese)
[2] 尚守平, 鲁华伟, 邹新平, 等. 土与结构相互作用大比例模型试验研究[J]. 工程力学, 2013, 30(9):41-46. Shang Shouping, Lu Huawei, Zou Xinping, et al. Experimental study on soil-structure interaction through large scale model tests[J]. Engineering Mechanics, 2013, 30(9):41-46. (in Chinese)
[3] Park H, Ha J, Kwon S, et al. Investigation of the dynamic behaviour of a storage tank with different foundation types focusing on the soil-foundation-structure interactions using centrifuge model tests[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(1):2301-2316.
[4] Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic testing[J]. Earthquake Engineering and Structural Dynamics, 1992, 21(1):79-92.
[5] Wang Q, Wang J, Jin F, et al. Real-time dynamic hybrid testing for soil-structure interaction analysis[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(12):1690-1702.
[6] 闫晓宇, 李忠献, 韩强, 等. 考虑土-结构相互作用的大跨度连续刚构桥振动台阵试验研究[J]. 工程力学, 2014, 31(2):58-65. Yan Xiaoyu, Li Zhongxian, Han Qiang, et al. Shaking tables test on a long-span rigid-framed bridge considering soil-structure interaction[J]. Engineering Mechanics, 2014, 31(2):58-65. (in Chinese)
[7] 郭珺, 唐贞云, 李易, 等. 基于子结构试验的土-结构相互作用实现研究[J]. 工程力学, 2017, 34(增刊1):214-219. Guo Jun, Tang Zhenyun, Li Yi, et al. The simulation of soil structure interaction based on substructuring testing[J]. Engineering Mechanics, 2017, 34(Suppl 1):214-219. (in Chinese)
[8] Lee S K, Park E C, Min K W, et al. Real-time substructuring technique for the shaking table test of upper substructures[J]. Engineering Structures, 2007, 29(9):2219-2232.
[9] Zhang R, Lauenstein P V, Phillips B M. Real-time hybrid simulation of a shear building with a uni-axial shake table[J]. Engineering Structures, 2016, 119:217-229.
[10] 姜忻良, 严士超. 分枝模态二步分析法及其在液体-结构-桩土体系中的应用[J]. 振动工程学报, 1994, 7(4):346-351. Jiang Xinliang, Yan Shichao. Two step method of the branched modal and its use for liquid-structure-pile-soil interaction system[J]. Journal of Vibration Engineering 1994, 7(4):346-351. (in Chinese)
[11] Bolisetti C, Whittaker A S, Coleman J L. Linear and nonlinear soil-structure interaction analysis of buildings and safety-related nuclear structures[J]. Soil Dynamics and Earthquake Engineering, 2018, 107:218-233.
[12] 王菲, 姜南. 土-结构三维动力分析的线性-非线性混合子结构法[J]. 工程力学, 2012, 29(1):155-161. Wang Fei, Jiang Nan. 3D dynamic analysis of soil-structure interaction system based on mixed linear-nonlinear substructure method[J]. Engineering Mechanics, 2012, 29(1):155-161. (In Chinese).
[1] 孙雅琼, 赵作周. 桥梁结构动应变监测的温度效应实时分离与动荷载识别[J]. 工程力学, 2019, 36(2): 186-194.
[2] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[3] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134-139.
[4] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[5] 王贞, 李强, 吴斌. 实时混合试验的自适应时滞补偿方法[J]. 工程力学, 2018, 35(9): 37-43.
[6] 李万润, 王辉, 孙玉萍, 杜永峰, 王雪平, 吴忠铁. 考虑隔震支座特性的隔震结构多尺度模拟与试验验证[J]. 工程力学, 2018, 35(6): 115-122,131.
[7] 甄伟, 盛平, 杨庆山, 田春雨. 嘉德艺术中心结构模型振动台试验与竖向地震作用分析[J]. 工程力学, 2018, 35(6): 200-208,230.
[8] 熊仲明, 韦俊, 陈轩, 张朝, 程攀. 跨越地裂缝框架结构振动台试验及数值模拟研究[J]. 工程力学, 2018, 35(5): 214-222.
[9] 李勇, 闫维明, 刘晶波, 解梦飞. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学, 2018, 35(4): 52-60,86.
[10] 唐贞云, 郭珺, 洪越, 李易, 李振宝. 多自由度实时子结构试验系统稳定性分析方法[J]. 工程力学, 2018, 35(3): 22-29.
[11] 孙宝印, 古泉, 张沛洲, 欧进萍. 考虑P-Δ效应的框架结构弹塑性数值子结构分析[J]. 工程力学, 2018, 35(2): 153-159.
[12] 吴迪, 熊焱. 基于试验的斜交网格-核心筒结构概率地震易损性分析[J]. 工程力学, 2018, 35(11): 155-161,171.
[13] 薛刚, 孟煜童, 白纬宇. 大跨度混凝土连续箱梁桥运营阶段的温度场分析[J]. 工程力学, 2017, 34(增刊): 116-121.
[14] 郭珺, 唐贞云, 李易, 李振宝. 基于子结构试验的土-结相互作用实现研究[J]. 工程力学, 2017, 34(增刊): 214-219.
[15] 张沛洲, 孙宝印, 古泉, 欧进萍. 基于数值子结构方法的低延性RC框架结构抗震性能精细化分析[J]. 工程力学, 2017, 34(增刊): 38-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日