工程力学 ›› 2019, Vol. 36 ›› Issue (4): 80-88.doi: 10.6052/j.issn.1000-4750.2017.12.0939

• 土木工程学科 • 上一篇    下一篇

工作状态对风力发电机地震响应的影响

席仁强1,2, 许成顺1, 杜修力1, 许坤1   

  1. 1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124;
    2. 常州大学机械工程学院, 江苏, 常州 213164
  • 收稿日期:2017-12-11 修回日期:2018-05-17 出版日期:2019-04-25 发布日期:2019-04-15
  • 通讯作者: 许成顺(1977-),女,黑龙江人,教授,博士,博导,主要从事岩土力学基础理论与试验研究(E-mail:xuchengshun@bjut.edu.cn). E-mail:xuchengshun@bjut.edu.cn
  • 作者简介:席仁强(1984-),男,河南人,博士生,主要从事地震工程领域研究工作(E-mail:xirenqiang@cczu.edu.cn);杜修力(1962-),男,四川人,教授,博士,博导,主要从事地震工程领域研究工作(E-mail:duxiuli@bjut.edu.cn);许坤(1988-),男,山东人,讲师,博士,主要从事桥梁与结构抗风研究(E-mail:xukun@bjut.edu.cn).
  • 基金资助:
    国家自然科学基金创新群体项目(51421005);国家自然科学基金优秀青年科学基金项目(51722801);国家自然科学基金青年科学基金项目(51808061)

EFFECTS OF OPERATING CONDITIONS ON THE SEISMIC RESPONSE OF WIND TURBINES

XI Ren-qiang1,2, XU Cheng-shun1, DU Xiu-li1, XU Kun1   

  1. 1. The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China;
    2. School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
  • Received:2017-12-11 Revised:2018-05-17 Online:2019-04-25 Published:2019-04-15

摘要: 风力发电机受到的气动力作用表现为气动阻尼和空气动力荷载,对结构地震响应分别具有阻尼效应和动力效应。该文建立理论分析模型,考虑运行和停机两种工况,分析工作状态影响风力发电机地震响应的规律和机理;针对NREL 5 MW基准风机,采用FAST软件分析不同风-地震组合作用下风力发电机结构动力响应,验证理论分析结果的正确性;同时,分析输入地震动方向对风力发电机地震响应的影响。结果表明:工作状态对风力发电机地震响应的影响与地震动幅值和风速有关;强震作用下,停机状态地震单独作用为最不利工况;弱震作用下,额定风速-设计地震动组合是最不利荷载组合;输入地震动方向影响风力发电机动力响应。

关键词: 地震响应, 阻尼效应, 动力效应, 工作状态, 风-地震组合

Abstract: Aerodynamic loading of wind turbines can be divided into aerodynamic damping and dynamic loading which have damping effect and dynamic effect on the seismic response of structures, respectively. A theoretical model is set up for analyzing the regularities and mechanism of how operating conditions affect the seismic response of wind turbine considering the running and parked conditions. The dynamic response of wind turbines is analyzed using FAST software under different wind-earthquake combinations for NREL baseline 5 MW wind turbines to validate the findings obtained in the theoretical model. The effects of input earthquake direction on the seismic response of wind turbines are analyzed. The results show that the effect of operating condition on the dynamic response of wind turbines depends on the seismic amplitude and wind speed. The most unfavorable load combination is seismic excitation in parked condition under strong ground motions. When the seismic action is weaker, it is the rated wind speed-design seismic action combination. The incident angle of earthquake waves significantly affects the dynamic response of wind turbines.

Key words: seismic response, damping effect, dynamic effect, operating condition, wind-earthquake combination

中图分类号: 

  • TK89
[1] 许斌, 韩继龙. 预应力装配式风机叶片连接段结构模拟分析[J]. 工程力学, 2016, 33(2):209-215. Xu Bin, Han Jilong. Numerical simulation on a joint segment of a prestressed prefabricated sectional wind turbine blade model[J]. Engineering Mechanics, 2016, 33(2):209-215. (in Chinese)
[2] BP. Energy outlook[EB/OL]. http://www.bp.com/, 2015, 2017-08-10.
[3] 李斌, 文昊天, 宫兆宇. 风力发电机塔筒风致响应分析与风振控制研究[J]. 工程力学, 2017, 34(增刊1):134-138. Li Bin, Wen Haotian, Gong Zhaoyu. Wind-induced response analysis and wind vibration control of a wind turbine tower drum[J]. Engineering Mechanics, 2017, 34(Suppl1):134-138. (in Chinese)
[4] Dodge, D. Illustrated history of wind power development[EB/OL]. http://telosnet.com/wind, 2009, 2017-8-10.
[5] Sadowski A J, Camara A, Dai K. Seismic analysis of a tall metal wind turbine support tower with realistic geometric imperfections[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(2):201-219.
[6] Ghaemmaghami A R, Mercan O, Kianoush R. Seismic soil-structure interaction analysis of wind turbines in frequency domain[J]. Wind Energy, 2017, 20(1):125-142.
[7] Zhao X, Maißer P. Seismic response analysis of wind turbine towers including soil structure interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multibody Dynamics, 2006, 220(1):53-61.
[8] 金鑫, 王磊, 刘桦. 大功率风力发电机地震动力学建模及载荷计算[J]. 工程力学, 2012, 29(5):224-229. Jin Xin, Wang Lei, Liu Hua. A large scale wind turbine dynamic model and its load calculation in earthquake[J]. Engineering Mechanics, 2012, 29(5):224-229. (in Chinese)
[9] 何玉林, 王磊, 杜静, 等. 地震作用下的风电机组振动仿真分析[J]. 太阳能学报, 2012, 33(2):179-184. He Yulin, Wang Lei, Du Jing, et al. Vibration simulation analysis of wind turbine under seismic load[J]. Acta Energiae Solaris Sinica, 2012, 33(2):179-184. (in Chinese)
[10] Witcher D. Seismic analysis of wind turbines in the time domain[J]. Wind Energy, 2005, 8(1):81-91.
[11] 彭超. 风力发电机组地震动力响应分析[J]. 太阳能学报, 2016, 37(12):3189-3194. Peng Chao. Seismic dynamic response analysis of wind turbine[J]. Acta Energiae Solaris Sinica, 2016, 37(12):3189-3194. (in Chinese)
[12] Asareh M A, Schonberg W, Volz J. Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines[J]. Renewable Energy, 2016(86):49-58.
[13] Yuan C, Chen J, Li J, et al. Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads[J]. Renewable Energy, 2017(113):1122-1134.
[14] Prowell I, Elgamal A, Uang C M, et al. Shake table testing and numerical simulation of a utility-scale wind turbine including operational effects[J]. Wind Energy, 2014, 17(7):997-1016.
[15] IEC 61400-1, Wind Turbines Part 1:Design requirements[S]. Geneva:International Electrotechnical Commission, Switzerland, 2005.
[16] Hansen M O L. Aerodynamics of wind turbines[M]. London:Earthscan, 2015:27-40.
[17] Valamanesh V, Myers A T. Aerodynamic damping and seismic response of horizontal axis wind turbine towers[J]. Journal of Structural Engineering, 2014, 140(11):04014090-1-04014090-9.
[18] 谢闽生, 麦淑良. 阻尼对加速度反应谱影响的进一步研究[J]. 华侨大学学报自然科学版, 1988, 9(3):340-345. Xie Minsheng, Mai Shuliang. A further study of the influence of damping on response spectrum[J]. Journal of HuaQiao University (Natural science), 1988, 9(3):340-345. (in Chinese)
[19] Asareh M A, Prowell I, Volz J, et al. A computational platform for considering the effects of aerodynamic and seismic load combination for utility scale horizontal axis wind turbines[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(1):91-102.
[20] 季亮, 祝磊, 姚小芹, 等. 现有风力发电机组地震作用计算方法对5 MW风力发电机组的适用性研究[J]. 太阳能学报, 2014, 35(11):2300-2305. Ji Liang, Zhu Lei, Yao Xiaoqin, et al. Applicability of existing seismic calculation methods for wind turbines on a 5 MW of wind turbine[J]. Acta Energiae Solaris Sinica, 2014, 35(11):2300-2305. (in Chinese)
[21] Jonkman J M, Buhl M L. FAST user's guide[R]. Colorado:National Renewable Energy Laboratory, 2005.
[22] Jonkman J M, Butterfield S, Musial W, et al. Definition of a 5 MW Reference wind turbine for offshore system development[R]. Colorado:National Renewable Energy Laboratory, 2009.
[23] FEMA P-695. Quantification of building seismic performance factors[R]. Redwood City:Applied Technology Council, 2009.
[24] GB 50011-2011, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2011, Code for seismic design of building[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[1] 陈洋洋, 陈凯, 谭平, 张家铭. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 149-158.
[2] 潘超, 张瑞甫, 王超, 逯静洲. 单自由度混联II型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1): 129-137,145.
[3] 田黎敏, 魏建鹏, 郝际平. 大跨度单层空间网格结构连续性倒塌动力效应分析及简化模拟方法研究[J]. 工程力学, 2018, 35(3): 115-124.
[4] 张菊辉, 管仲国, 陈杨, 王伟, 汪鹏飞. 可提离式桩基础规则连续梁桥的地震响应分析[J]. 工程力学, 2017, 34(6): 190-197.
[5] 王笃国, 赵成刚. 地震波斜入射下考虑场地非线性、地形效应和土结动力相互作用的大跨连续刚构桥地震响应分析[J]. 工程力学, 2017, 34(4): 32-41.
[6] 王小庆, 金先龙, 杨志豪. 基于ALE的大型输水隧道地震动响应并行数值分析[J]. 工程力学, 2017, 34(3): 247-256.
[7] 曾翔, 刘诗璇, 许镇, 陆新征. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊): 113-118.
[8] 杨勋, 王欢欢, 余克勤, 金先龙. 流-固耦合作用下斜坡式防波堤地震动力响应分析[J]. 工程力学, 2016, 33(10): 248-256.
[9] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10): 52-61.
[10] 黄福云, 陈宝春, 李建中, 程浩德. 钢管混凝土单圆管拱结构罕遇地震作用动台阵试验研究[J]. 工程力学, 2015, 32(7): 64-73.
[11] 袁勇,申中原,禹海涛. 沉管隧道纵向地震响应分析的多体动力学方法[J]. 工程力学, 2015, 32(5): 76-83.
[12] 刘彦辉,谭平,周福霖,杜永峰,闫维明. 高层框架-剪力墙隔震结构地震响应研究[J]. 工程力学, 2015, 32(3): 134-139,224.
[13] 吴庆雄, 黄育凡, 陈宝春. 钢管混凝土组合桁梁-格构墩轻型桥梁非线性地震响应分析[J]. 工程力学, 2015, 32(12): 90-98.
[14] 吴庆雄,黄育凡,陈宝春. 钢管混凝土组合桁梁-格构墩轻型桥梁振动台阵试验研究[J]. 工程力学, 2014, 31(9): 89-96.
[15] 薛素铎,刘毅,李雄彦. 协同工作条件下地基土对单层球面网壳结构动力性能的影响[J]. 工程力学, 2014, 31(9): 133-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日