工程力学 ›› 2019, Vol. 36 ›› Issue (2): 154-164.doi: 10.6052/j.issn.1000-4750.2017.12.0938

• 土木工程学科 • 上一篇    下一篇

基于钢板屈曲分析的双钢板-混凝土组合剪力墙轴压承载力计算方法

韦芳芳1, 郑泽军1, 喻君1, 王永泉2   

  1. 1. 河海大学土木与交通学院, 南京 210098;
    2. 河海大学水利水电学院, 南京 210098
  • 收稿日期:2017-12-11 修回日期:2018-03-15 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 喻君(1982-),男,浙江人,副教授,博士,硕导,从事结构抗爆和抗倒塌研究(E-mail:yujun@hhu.edu.cn). E-mail:yujun@hhu.edu.cn
  • 作者简介:韦芳芳(1978-),女,浙江人,副教授,博士,硕导,主要从事钢-混凝土组合结构研究(E-mail:ffwei@hhu.edu.cn);郑泽军(1994-),男,浙江人,硕士生,主要从事钢-混凝土组合结构研究(E-mail:zhengzj@hhu.edu.cn);王永泉(1981-),男,江苏人,副教授,博士,硕导,主要从事复杂结构施工分析研究(E-mail:wyq_hhu@hhu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51608168);中央高校业务费项目(2017B41814,2017B16014)

COMPUTATIONAL METHOD FOR AXIAL COMPRESSION CAPACITY OF DOUBLE STEEL-CONCRETE COMPOSITE SHEAR WALLS WITH CONSIDERATION OF BUCKLING

WEI Fang-fang1, ZHENG Ze-jun1, YU Jun1, WANG Yong-quan2   

  1. 1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;
    2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
  • Received:2017-12-11 Revised:2018-03-15 Online:2019-02-22 Published:2019-02-22

摘要: 为了考虑钢板屈曲对双钢板-混凝土组合(DSCC)剪力墙的轴压承载力的影响,该文首先以4个组合墙的轴压试验为基础,采用ABAQUS建立DSCC剪力墙的有限元模型。模型中混凝土采用实体单元,钢板采用壳单元,剪力连接件采用非线性弹簧单元SpringA,并考虑了材料非线性和钢板初始缺陷。在验证有限元模型后,研究了不同参数对钢板屈曲的影响,得到了钢板屈曲应力的计算公式。分析结果表明:当钢板出现局部横向贯通屈曲时,破坏模式为屈曲位置的混凝土压碎;当钢板未发生屈曲时,破坏模式为钢板屈服;墙侧面钢板宽度较小时,侧面钢板不会发生屈曲。最后,基于钢板屈曲分析以及构件极限状态下的应力状态分析,提出了新的DSCC剪力墙的轴压承载力计算方法,引入了钢板屈曲的影响。结构表明:对比规范JGJ/T 380―2015采用的计算公式,该文提出的计算方法具有更高的精度和稳定性,可用于DSCC剪力墙的深入研究以及工程设计。

关键词: 双钢板-混凝土组合剪力墙, 轴压承载力, 钢板屈曲, 计算方法, 数值模型

Abstract: To investigate the effect of steel plate buckling on the axial compression bearing capacities of double steel-concrete composite (DSCC) shear walls, the finite element models were built using ABAQUS in accordance with four axial tests of DSCC shear walls. In the numerical models, concrete was modeled with solid elements, steel plate with shell element and shear connectors with nonlinear spring element SpringA. Moreover, the nonlinear behavior of materials and initial imperfection of steel plates were taken into account in the analysis. After the validation of numerical models, the effects of different parameters on the local buckling of steel plates were investigated, and the formula to calculate the buckling stress was obtained. The numerical results indicate that: if the local buckling goes through the transverse section of steel wall plates, the failure mode is concrete crushing at the buckling position, and if no buckling occurs, the failure mode is yielding in the steel plates; when the width of side steel plates is small, no buckling occurs at the side plates. Based on the buckling analysis and ultimate stress state analysis, a new approach was proposed to compute the axial compression bearing capacity of DSCC shear walls with the consideration of steel plate buckling. The results show that: compared with the calculation formula in the standard JGJ/T 380—2015, the proposed approach improves the accuracy and stability in estimating the axial bearing capacity and can be used for further research and engineering practice of DSCC shear walls.

Key words: double steel-concrete composite (DSCC) shear wall, axial compression bearing capacity, steel plate buckling, computation method, numerical models

中图分类号: 

  • TU398
[1] Pryer J W, Bowerman H G. The development and use of British steel Bi-Steel[J]. Journal of Constructional Steel Research, 1998, 46(1):173-178.
[2] Takeuchi M, Narikawa M, Matsuo I, et al. Study on a concrete filled structure for nuclear power plants[J]. Nuclear Engineering and Design, 1998, 179(2):209-223.
[3] 祝文君, 马军, 黄会平, 等. 双层钢板组合剪力墙在异型结构中的应用及研究[J]. 特种结构, 2010, 27(2):14-16. Zhu Wenjun, Ma Jun, Huang Huiping, et al. Application and research of double-layer steel composite shear wall in the special structure[J]. Special Structures, 2010, 27(2):14-16. (in Chinese)
[4] 丁朝辉, 江欢成, 曾菁, 等. 双钢板-混凝土组合墙的大胆尝试——盐城电视塔结构设计[J]. 建筑结构, 2011, 41(12):87-91. Ding Zhaohui, Jiang Huancheng, Zeng Jing, et al. An innovative application of SCS composite wall:Structural design of Yancheng TV Tower[J]. Building Structure, 2011, 41(12):87-91. (in Chinese)
[5] 赵宏, 雷强, 侯胜利, 等. 八柱巨型结构在广州东塔超限设计中的工程应用[J]. 建筑结构, 2012, 42(10):1-6. Zhao Hong, Lei Qiang, Hou Shengli, et al. Engineering application of 8 columns mega frame-core wall system in Guangzhou East Tower[J]. Building Structure, 2012, 42(10):1-6. (in Chinese)
[6] Eom T S, Park H G, Lee C H, et al. Behavior of double skin composite wall subjected to in-plane cyclic loading[J]. Journal of Structural Engineering, 2009, 135(10):1239-1249.
[7] 聂建国, 卜凡民, 樊健生. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2011, 32(11):74-81. Nie Jianguo, Bu Fanmin, Fan Jiansheng. Experimental research on seismic behavior of low shear-span ratio composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2011, 32(11):74-81. (in Chinese)
[8] 李盛勇, 聂建国, 刘付钧, 等. 外包多腔钢板-混凝土组合剪力墙抗震性能试验研究[J]. 土木工程学报, 2013, 46(10):26-38. Li Shengyong, Nie Jianguo, Liu Fujun, et al. Experimental study on aseismic behavior of concrete filled double-steel-plate composite shear walls[J]. China Civil Engineering Journal, 2013, 46(10):26-38. (in Chinese)
[9] Ji X, Jiang F, Qian J. Seismic behavior of steel tube-double steel plate-concrete composite walls:Experimental tests[J]. Journal of Constructional Steel Research, 2013, 86:17-30.
[10] 马恺泽, 刘伯权, 鄢红良, 等. 高轴压比双层钢板-高强混凝土组合剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(5):218-224. Ma Kaize, Liu Boquan, Yan Hongliang, et al. Experimental investigation on aseismic behavior of dual steel high strength concrete shear walls with high axial load ratio[J]. Engineering Mechanics, 2014, 31(5):218-224. (in Chinese)
[11] 李健, 罗永峰, 郭小农, 等. 双层钢板组合剪力墙抗震性能试验研究[J]. 同济大学学报(自然科学版), 2013, 41(11):1636-1643. Li Jian, Luo Yongfeng, Guo Xiaonong, et al. Experimental research on seismic behavior of double skin composite shear wall[J]. Journal of Tongji University, 2013, 41(11):1636-1643. (in Chinese)
[12] 刘鸿亮, 蔡健, 杨春, 等. 带约束拉杆双层钢板内填混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(6):84-92. Liu Hongliang, Cai jian, Yang Chun, et al. Experimental study on seismic behavior of composite shear wall with double steel plates and infill concrete with binding bars[J]. Journal of Building Structures, 2013, 34(6):84-92. (in Chinese)
[13] 朱立猛, 周德源, 赫明月. 带约束拉杆钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(6):93-102. Zhu Limeng, Zhou Deyuan, He Mingyue, Experimental research on seismic behavior of composite concrete and steel plate shear walls with binding bars[J]. Journal of Building Structures, 2013, 34(6):93-102. (in Chinese)
[14] 韦芳芳, 杜金娥, 胡雪峰, 等. 单面受火双钢板-混凝土组合剪力墙的耐火性能试验研究[J]. 东南大学学报(自然科学版), 2016, 46(3):518-522. Wei Fangfang, Du Jin'e, Hu Xuefeng, et al. Experimental research on fire performance of concrete filled double steel-plate composite wall exposed to one-side fire[J]. Journal of Southeast University, 2016, 46(3):518-522. (in Chinese)
[15] 胡红松, 聂建国. 双钢板-混凝土组合剪力墙变形能力分析[J]. 建筑结构学报, 2013, 34(5):52-62. Hu Hongsong, Nie Jianguo. Deformability analysis of composite shear walls with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(5):52-62. (in Chinese)
[16] 张有佳, 李小军, 贺秋梅, 等. 钢板混凝土组合墙体局部稳定性轴压试验研究[J]. 土木工程学报, 2016, 49(1):62-68. Zhang Youjia, Li Xiaojun, He Qiumei, et al. Experimental study on local stability of composite walls with steel plates and filled concrete under concentric loads[J]. China Civil Engineering Journal, 2016, 49(1):62-68. (in Chinese)
[17] JGJ 138-2016, 组合结构设计规范[S]. 北京:中国建筑工业出版社, 2016. JGJ 138-2016, Code for design of composite structures[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[18] JGJ/T 380-2015, 钢板剪力墙技术规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 380-2015, Technical specification for steel plate shear walls[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[19] 刘阳冰, 杨庆年, 刘晶波, 等. 双钢板-混凝土剪力墙轴心受压性能试验研究[J]. 四川大学学报(工程科学版), 2016, 48(2):83-90. Liu Yangbing, Yang Qingnian, Liu Jingbo, et al. Experimental research on axial compressive behavior of shear wall with double steel plates and filled concrete[J]. Journal of Sichuan University, 2016, 48(2):83-90. (in Chinese)
[20] GB 50010-2010, 混凝土结构设计规范[S]:北京:中国建筑工业出版社, 2011. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[21] Alfarah B, López-Almansa F, Oller S. New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures[J]. Engineering Structures, 2017, 132:70-86.
[22] Krätzig W B, Pölling R. An elasto-plastic damage model for reinforced concrete with minimum number of material parameters[J]. Computers & Structures, 2004, 82(15):1201-1215.
[23] Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normalweight concrete[J]. AISC Engineering, 1971, 8(4):55-64.
[24] 马原. 组合结构栓钉连接件抗拔性能研究[D]. 北京:清华大学, 2015:85-92. Ma Yuan. Research on the uplift performance of headed studs in composite structure[D]. Beijing:Tsinghua University, 2015:85-92. (in Chinese)
[25] 庄茁. 基于ABAQUS的有限元分析和应用[M]. 北京:清华大学出版社, 2009:209-217. Zhuang Zhuo. Finite element analysis and applications based on software ABAQUS[M]. Beijing:Tsinghua University Press, 2009:209-217. (in Chinese)
[26] DS Simulia Corporation. Getting started with abaqus:interactive edition[Z]. Rhode Island:DS Simulia Corporation, 2012.
[27] Yang Y, Liu J, Fan J. Buckling behavior of double-skin composite walls:An experimental and modeling study[J]. Journal of Constructional Steel Research, 2016, 121:126-135.
[28] Akiyama H, Sekimoto H, Fukihara M, et al. A compression and shear loading test of concrete filled steel bearing wall[C]//Transaction of the 11th International Conference on Structural Mechanics in Reactor Technology. Tokyo, Japan:International Association for Structural Mechanics in Reactor Technology (IASMiRT), 1991:323-328.
[29] 张有佳, 李小军. 钢板混凝土组合墙轴压受力性能有限元分析[J]. 工程力学, 2016, 33(8):84-92. Zhang Youjia, Li Xiaojun, Finite element analysis of axial compressive stress performance for steel plate reinforced concrete compound walls[J]. Engineering Mechanics, 2016, 33(8):84-92. (in Chinese)
[30] Pallares L, Hajjar J F. Headed steel stud anchors in composite structures, Part Ⅱ:tension and interaction[J]. Journal of Constructional Steel Research, 2010, 66(2):213-228.
[31] Huang Z, Liew J Y R. Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors[J]. Journal of Constructional Steel Research, 2016, 124:142-162.
[32] Hao T, Cao W, Qiao Q, et al. Structural performance of composite shear walls under compression[J]. Applied Sciences, 2017, 7(2):162.
[1] 唐琼, 李易, 陆新征, 闫维明. 多螺箍筋柱轴压承载力研究[J]. 工程力学, 2018, 35(S1): 166-171.
[2] 陈力波, 王嘉嘉, 上官萍. 公路斜交梁桥地震易损性模型研究[J]. 工程力学, 2018, 35(1): 160-171,181.
[3] 闫维明, 谢志强, 宋林琳, 何浩祥. 冷弯薄壁型钢锁铆连接力学性能及其本构模型研究[J]. 工程力学, 2017, 34(8): 133-143.
[4] 唐欣薇, 黄文敏, 周元德, 康政. 华南风化花岗岩劈拉断裂行为的试验与细观模拟研究[J]. 工程力学, 2017, 34(6): 246-256.
[5] 徐礼华, 吴敏, 周鹏华, 谷雨珊, 许明耀. 钢管自应力自密实高强混凝土短柱轴心受压承载力试验研究[J]. 工程力学, 2017, 34(3): 93-100.
[6] 金浏, 苏晓, 杜修力. 基于三维细观数值方法的钢筋混凝土悬臂梁抗剪行为研究[J]. 工程力学, 2017, 34(12): 59-66.
[7] 薛滨, 陈勇, 陈聪, 张文杰, 郭勇, 王激扬, 孙炳楠. 拉弯荷载下钢管杆塔内外法兰设计计算方法[J]. 工程力学, 2017, 34(10): 76-86.
[8] 吴毅彬, 黄延, 瞿革. 大型船厂工业刚性地坪结构设计方法研究[J]. 工程力学, 2016, 33(增刊): 133-137.
[9] 咸庆军, 童乐为. 型钢混凝土梁梁连接节点疲劳强度分析[J]. 工程力学, 2016, 33(4): 188-194,204.
[10] 袁辉辉, 吴庆雄, 陈宝春, 蔡慧雄. 平缀管式等截面钢管混凝土格构柱荷载-位移骨架曲线计算方法[J]. 工程力学, 2016, 33(12): 206-216.
[11] 仲健林, 任杰, 马大为, 王玺. 基于精确数值建模方法的自适应底座优化设计研究[J]. 工程力学, 2015, 32(9): 229-235,249.
[12] 王小莉, 上官文斌, 李明敏, 段小成, 阎礁. 不同超弹性本构模型和多维应力下开裂能密度的计算方法[J]. 工程力学, 2015, 32(4): 197-205.
[13] 张建仁,唐皇,彭建新,李炬. 锚贴钢板加固RC锈蚀梁承载力计算方法与试验研究[J]. 工程力学, 2015, 32(3): 97-103.
[14] 高振国, 胡志强, 王革. FPSO舷侧结构抗撞性能的解析计算研究[J]. 工程力学, 2014, 31(增刊): 155-160.
[15] 王先铁, 马尤苏夫, 郝际平, 白连平, 刘天龙. 钢板剪力墙边缘构件的计算方法研究[J]. 工程力学, 2014, 31(8): 175-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日