工程力学 ›› 2019, Vol. 36 ›› Issue (2): 141-153.doi: 10.6052/j.issn.1000-4750.2017.12.0930

• 土木工程学科 • 上一篇    下一篇

基于CFRP加固的钢混排架厂房全寿命周期地震成本研究

朱健1,2, 赵均海1, 谭平3, 金建敏3   

  1. 1. 长安大学建筑工程学院, 西安 710064;
    2. 宁夏大学土木与水利工程学院, 银川 750021;
    3. 广州大学工程抗震研究中心, 广州 510405
  • 收稿日期:2017-12-06 修回日期:2018-03-23 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 朱健(1975-),男,河北阜城人,教授,博士,博士后,主要从事结构抗震和防灾减灾研究(E-mail:zhujian@nxu.edu.cn). E-mail:zhujian@nxu.edu.cn
  • 作者简介:赵均海(1963-),男,陕西人,教授,博士,博导,主要从事结构力学和防灾减灾研究(E-mail:zhaojh@chd.edu.cn);谭平(1973-),男,湖南人,研究员,博士,博导,主要从事结构抗震和防灾减灾研究(E-mail:ptan@gzu.edu.cn);金建敏(1974-),男,湖北人,高工,博士,主要从事结构抗震和防灾减灾研究(E-mail:jinjianmin152@aliyun.com).
  • 基金资助:
    国家自然科学基金项目(51468050);国家重点基础研究发展计划项目(2011CB013606);广州市科技计划项目(201707010333)

SEISMIC LIFE-CYCLE LOSS ESTIMATION OF CFRP REINFORCED INDUSTRIAL BUILDINGS

ZHU Jian1,2, ZHAO Jun-hai1, TAN Ping3, JIN Jian-min3   

  1. 1. Department of Civil Engineering, Chang'an University, Xi'an 710064, China;
    2. Department of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China;
    3. Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510405, China
  • Received:2017-12-06 Revised:2018-03-23 Online:2019-02-22 Published:2019-02-22

摘要: 采用增量动力分析(incremental dynamic analysis,IDA)对坐落于我国西部具体地区的单层钢混排架工业厂房基于碳纤维布(carbon fiber reinforced polymer,CFRP)加固前后的地震损伤和全寿命周期地震成本进行对比计算分析,研究中参考了中国抗震规范和美国太平洋地震工程研究中心(PEER)强震数据库后拟合建立了与分析地区地质场地条件接近的当地地震风险度概率模型。采用多参数混合加权推导计算出CFRP加固钢混排架柱厂房结构全寿命周期地震损失成本统计值,计算过程中的结构尺寸、材料强度、地震荷载等相关参数变量采用蒙特卡洛(MonteCarlo Sampling,MCS)随机样本法予以考虑,研究结果显示该地区CFRP加固单层钢混排架厂房结构全寿命周期地震成本统计中位值在5.75元/(年·m2),扣除加固材料成本及加工费用后较同类型未加固普通厂房全寿命期地震成本费用综合节省约16.5%,显示厂房采用CFRP加固技术后具有良好的全寿命周期地震成本经济性,同时CFRP加固后的厂房结构地震年平均成本直接费CoV统计偏差在1.35%~1.36%。

关键词: 全寿命周期地震成本, 钢混排架厂房结构, 碳纤维布加固, 非线性增量分析, 蒙特卡洛随机样本法, 加权混合参数法

Abstract: The seismic life-cycle cost (SLCC) is a estimated measure of the damage cost due to future earthquakes that will occur during the service period of industrial buildings. Thusly, the structural seismic vulnerability and life-cycle seismic cost of single story factory buildings with or without the CFRP strengthen bent frame columns in multiple earthquake hazard levels (HL) is studied using nonlinear incremental dynamic analysis (IDA). The seismic hazardous probability model of the selected region in Western China is established based on China seismic code and strong waves database from The Pacific Earthquake Engineering Research Center (PEER). Four damage indices (DIs) are used creatively, whose hybrid weight factors can be calculated statistic results of SLCC related to particular structural & nonstructural damage limit states (LS). The Monte Carlo Samplings (MCS) method is integrated into the SLCC framework with taking into account the uncertainty on mass, material properties and ground waves. The seismic life-cycle statistical median cost of CFRP reinforced industrial buildings in the selected area is 5.75 yuan/m2 annually and more economical in budget with 18 percent savings compared to the original structures. The Coefficient variance of results is only 1.35%~1.36%.

Key words: Seismic life-cycle cost, reinforced concrete industrial buildings, CFRP reinforcement, Nonlinear incremental dynamic analysis, Monte Carlo stochastic method, hybrid weight factors

中图分类号: 

  • TU323.5
[1] 国家减灾委员会, 科技部抗震救灾专家组. 汶川地震灾害综合分析与评估[M]. 北京:科学出版社, 2008:140-145. National Disaster Reduction Committee-Earthquake Relief Expert Group in Ministry of Science and Technology, Wenchuan earthquake disaster comprehensive analysis and assessment[M]. Beijing:Science Press, 2008:140-145. (in Chinese)
[2] 百度百科, 印尼地震[EB/OL]. 网址http://baike.baidu.com/item/9.28 Indonesia Earthquake. Indonesia Earthquake[EB/OL]. Website:http://baike.baidu.com/item/9.28 Indonesia Earthquake. (in Chinese)
[3] 中再保险公司, 中国地震风险与保险实验室挂牌成立[EB/OL]. 网址:http://www.chinare.com.cn/zhzjt/441005. China reinsurance group, China seismic hazard & insurance laboratory[EB/OL]. Website:http://www.chinare.com.cn/zhzjt/441005. (in Chinese)
[4] Porter K A. An overview of PEER's performance-based earthquake engineering methodology[C]//Ninth International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP9), Rotterdam, Millpress, 2003:1-8.
[5] Moehle J, Deierlein G G. A framework methodology for performance-based earthquake engineering[C]//13th World Conference on Earthquake Engineering, Vancouver, British Columbia, Canada, 2004, No. 679.
[6] Wen Y K, Kang Y J. Minimum building life-cycle cost design criteria I:methodology[J]. Journal of Structural Engineering, 2001, 127(3):330-337.
[7] Liu M, Burns S A, Wen Y K. Optimal seismic design of steel frame buildings based on life cycle cost consideration[J]. Earthquake Engineering and Structure Dynamics, 2003, 32:1313-1332.
[8] Takahashi Y, Kiureghian A D, Alfredo H-S. Ang,Life-cycle cost analysis based on a renewal model of earthquake occurrences[J]. Earthquake Engineering & Structural Dynamics, 2004, 33:859-880.
[9] Chritensen P T. Life-cycle cost -benefit (LCCB) analysis of bridges from a user and social point of view[J]. Structure and Infrastructure Engineering, 2009, 5(1):49-57.
[10] Mitropoulou C C, Lagaros N D, Papadrakakis M. Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions[J], Reliability Engineering and System Safety, 2011, 96:1311-1331.
[11] Chiu C K, Hsiao F P, Jean W Y. A novel lifetime cost-benefit analysis method for seismic retrofitting of low-rise reinforced concrete buildings[J]. Structure and Infrastructure Engineering, 2013, 9(9):891-902.
[12] Castaldo P, Palazzo B, Vecchia P D. Life-cycle cost and seismic reliability analysis of 3D systems equipped with FPS for different isolation degrees[J]. Engineering Structures, 2016, 125(15):349-363.
[13] Rossetto T, Amr Elnashai. A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures[J]. Engineer Structures 2005, 27(3):397-409
[14] Jun Ji, Amr S Elnashai, Daniel A Kuchma. An analytical framework for seismic fragility analysis of RC high-rise buildings[J]. Engineering Structures, 2007, 29:3197-3209
[15] 朱健. 结构动力学原理与地震易损性分析[M]. 北京:科学出版社, 2013. Zhu Jian, Structural dynamics and seismic vulnerability analysis[M]. Beijing:Science Press, 2013. (in Chinese)
[16] 于晓辉, 吕大刚. HAZUS相容的钢筋混凝土框架结构地震易损性分析[J]. 工程力学, 2016, 33(3):152-160. Yu Xiaohui, Lü Dagang. Hazus-compatible seismic fragility analysis for RC frame structures[J]. Engineering Mechanics, 2016, 33(3):152-160. (in Chinese)
[17] Min Liu, Baoxia Mi, Life cycle cost analysis of energy-efficient buildings subjected to earthquakes[J]. Energy and Buildings, 2017, 154:581-589.
[18] Porter K A, Kennedy R P, Bachman R E. Creating fragility functions for performance-based earthquake engineering[J]. Earthquake Spectra. 2007, 23(2):471-489.
[19] 朱健, 赵均海, 谭平, 等. 基于随机模拟的单层工业厂房全寿命期地震成本研究[J]. 地震工程与工程振动, 2018, 38(1):51-64. Zhu Jian, Zhao Junhai, Tan Pin, et al. Seismic life-cycle loss estimation of single story factory buildings[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(1):51-64. (in Chinese)
[20] Wen Y K, Kang Y J. Minimum building life-cycle cost design criteria Ⅱ:Applications[J]. Journal of Structural Engineering (ASCE). 2001, 127(3):338-346.
[21] Petrone C, Rossetto T, Goda K. Fragility assessment of a RC structure under tsunami actions via nonlinear static and dynamic analyses[J]. Engineering Structure, 2017, 136(1):36-53.
[22] Jinkoo Kim, Hyungjun Shin. Seismic loss assessment of a structure retrofitted with slit-friction hybrid dampers[J]. Structural and Multidisciplinary Optimization, 2017, 130:336-350.
[23] 徐龙河, 单旭, 李忠献. 强震下钢框架结构易损性分析及优化设计[J]. 工程力学, 2013, 30(1):175-179. Xu Longhe, Shan Xu, Li Zhongxian. Vulnerability analysis and optimization design for steel frame structure under strong earthquakes[J]. Engineering Mechanics, 2013, 30(1):175-179. (in Chinese)
[24] Ghobarah A. On drift limits associated with different damage levels[C]//Proceedings of the International Workshop on Performance-based Seismic Design:Department of Civil Engineering, McMaster University, Bled, 2004:1-12.
[25] Elenas A, Meskouris K. Correlation study between seismic acceleration parameters and damage indices of structures[J]. Engineering Structures, 2001, 23:698-704.
[26] Lagaros N D, Mitropoulou C C. The effect of uncertainties in seismic loss estimation of steel and reinforced concrete composite buildings[J]. Structure and Infrastructure Engineering, 2013, 9(21):546-556.
[27] ATC-13, Earthquake damage evaluation data for California[S]. Redwood City. CA:Applied Technology Council, 1985.
[28] FEMA 227, A benefit-cost model for the seismic rehabilitation of buildings[S]. Washington, DC:Federal Emergency Management Agency, Building Seismic Safety Council, 1992.
[29] 黄兴富, 酆少英, 等. 银川盆地构造发展-深地震反射剖面揭示浅部地质与深部构造的联系[J]. 地质科学, 2016, 51(1):53-66. Huang Xinfu, Li Shaoyin, et al. Development of the Yin-chuan Basin:Deep seismic reflection profile revealed the linkages between shallow geology and deep structures[J]. Chinese Journal of Geology, 2016, 51(1):53-66. (in Chinese)
[30] GB50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB50011-2010, Code for seismic design of buildings[S]. Beijing:China Construction Press Publication, 2010. (in Chinese)
[31] FEMA-350, Recommended seismic design criteria for new steel moment-frame buildings[S]. Washington DC:Federal Emergency Management Agency, 2000.
[32] Wei H, Wu Z, Guo X and Yi F M, Experimental study on partially deteriorated strength concrete columns confined with CFRP[J]. Engineering Structures, 2009, 31(10):2495-2505.
[33] Zhu J T, Wang X L, Xu Z D, et al. Experimental study on seismic behavior of RC frames strengthened with CFRP sheets[J]. Composite Structures, 2011, 93(6):1595-1603.
[34] Amran Y H M, Alyousef R, Rashid R S M, et al. Properties and applications of FRP in strengthening RC structures:A review[J]. Structures, 2018, 16:208-238.
[35] Grande E, Imbimbo M, Sacco E. Finite element analysis of masonry panels strengthened with FRPs[J]. Engineering Structures, 2013, 45(1):1296-1309.
[36] Eid R, Paultre P. Compressive behavior of FRP-confined reinforced concrete columns[J]. Engineering Structures, 2017, 132(1):518-530.
[37] Tabandeh A, Gardoni P. Probabilistic capacity models and fragility estimates for RC columns retrofitted with FRP composites[J]. Engineering Structures, 2014, 74(1):13-22.
[38] GB 50009-2012, 建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB 50009-2012, Load code for the design of building structures[S]. Beijing:China Construction Press Publication, 2012. (in Chinese)
[1] 刘永华,张耀春. 弯曲缩短对杆件结构非线性分析的影响[J]. 工程力学, 2013, 30(7): 61-67.
[2] 孙路, 刘晚成, 林均岐. 几何参数表达的压杆挠曲线方程的解析与应用[J]. 工程力学, 2012, 29(增刊I): 16-19.
[3] 吴波, 黄仕香, 赵新宇. 混凝土框剪结构的落层倒塌碰撞试验[J]. 工程力学, 2012, 29(6): 176-187.
[4] 李 易;陆新征;任爱珠;叶列平;陈适才. 某八层混凝土框架结构火灾连续倒塌模拟[J]. 工程力学, 2011, 28(增刊I): 53-059.
[5] 高轩能;江 媛;彭观寿;张惠华. 支撑型式与钢框架结构的侧移刚度[J]. 工程力学, 2010, 27(增刊I): 280-285.
[6] 翟长海;李 爽;谢礼立;孙亚民. 钢筋混凝土规则框架结构非弹性位移比谱研究[J]. 工程力学, 2009, 26(9): 80-086.
[7] 张年文;童根树. 平面框架几何非线性分析的修正拉格朗日-协同转动联合法[J]. 工程力学, 2009, 26(8): 100-106,.
[8] 刘永华;张耀春. 半刚性钢框架实用非线性分析[J]. 工程力学, 2007, 24(12): 0-013.
[9] 唐建民;李长慧;卓家寿. 拉索穹顶结构几何大变形混合有限元静力分析[J]. 工程力学, 2000, 17(4): 21-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日