工程力学 ›› 2019, Vol. 36 ›› Issue (2): 114-123.doi: 10.6052/j.issn.1000-4750.2017.12.0921

• 土木工程学科 • 上一篇    下一篇

基于Copula函数的主余震地震动强度参数相关性分析

朱瑞广1, 吕大刚2   

  1. 1. 燕山大学建筑工程与力学学院, 秦皇岛 066004;
    2. 哈尔滨工业大学土木工程学院, 哈尔滨 150090
  • 收稿日期:2017-12-07 修回日期:2018-09-16 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 吕大刚(1970-),男,黑龙江人,教授,博士,博导,主要从事结构可靠性、工程风险、地震工程等研究(E-mail:ludagang@hit.edu.cn). E-mail:ludagang@hit.edu.cn
  • 作者简介:朱瑞广(1987-),男,河北人,讲师,博士,主要从事地震动选择和结构抗震研究(E-mail:zrg179@163.com).
  • 基金资助:
    国家自然科学基金面上项目(51678209,51378162);国家自然科学基金青年基金项目(51408155);燕山大学博士基金项目(BL18053)

COPULA-BASED CORRELATION ANALYSIS OF INTENSITY MEASURES OF MAINSHOCK-AFTERSHOCK GROUND MOTIONS

ZHU Rui-guang1, LÜ Da-gang2   

  1. 1. School of Civil Engineering and Mechanics, YanShan University, Qinhuangdao 066004, China;
    2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
  • Received:2017-12-07 Revised:2018-09-16 Online:2019-02-22 Published:2019-02-22

摘要: 该文从PEER NGA-West2地震动数据库挑中选出662条主余震地震动,对主震和余震地震动强度参数之间的相关性进行了分析。计算了主震和余震地震动强度参数之间的相关系数,并结合K-S检验以及AIC准则和BIC准则确定了它们的最优概率模型。同时,利用AIC准则和BIC准则确定了主震和余震地震动强度参数之间的最优Copula函数,并基于Copula函数建立了它们之间的联合分布函数。在此基础之上,给出了给定主震地震动参数条件下,余震地震动强度参数的条件分布和条件均值。研究结果表明:在34个所选强度参数中,卓越持时之间的相关性最高;利用Copula函数可以较为精确地建立主震和余震地震动强度参数间的联合分布;给定主震地震动强度参数条件下,Copula条件均值可以用来预测余震地震动强度参数的取值。

关键词: 主余震地震动, 相关系数, Copula函数, 联合分布, 条件均值

Abstract: This study selects 662 mainshock-aftershock (MS-AS) ground motions from PEER NGA-West2 ground motion database, to analyze the correlation of the intensity measures (IMs) among the MS-AS ground motions. The correlation coefficients of these IMs among the MS-AS ground motions are calculated, and their optimal probability models are determined according to the K-S test, the AIC criterion and the BIC criterion. Meanwhile, the AIC criterion and the BIC criterion are used to determine the optimal copula functions among the MS-AS ground motion IMs, and their joint distributions are built based on the copula functions. On this basis, the conditional distribution and the conditional mean of the aftershock ground motion IMs are obtained, given those of the mainshock. The results show that: the significant duration has the highest correlation amongst the 34 selected IMs, the joint distributions can be built using the Copula function with reasonable accuracy, and the Copula conditional mean can be used to predict the IMs of the aftershock ground motions, given the IMs of the mainshock ground motions.

Key words: mainshock-aftershock ground motions, correlation coefficient, Copula function, joint distribution, conditional mean

中图分类号: 

  • P315.9
[1] Zhang Y, Chen J, Sun C. Damage-based strength reduction factor for nonlinear structures subjected to sequence-type ground motions[J]. Soil Dynamics and Earthquake Engineering, 2017, 92(Supplement C):298-311.
[2] Wen W, Zhai C, Ji D, et al. Framework for the vulnerability assessment of structure under mainshockaftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2017, 101(Supplement C):41-52.
[3] Shokrabadi M, Burton H V, Stewart J P. Impact of sequential ground motion pairing on mainshockaftershock structural response and collapse performance assessment[J]. Journal of Structural Engineering, 2018, 144(10):04018177(1-13).
[4] Ruiz-García J, Aguilar J D. Influence of modeling assumptions and aftershock hazard level in the seismic response of post-mainshock steel framed buildings[J]. Engineering Structures, 2017, 140(Supplement C):437-446.
[5] Shin M, Kim B. Effects of frequency contents of aftershock ground motions on reinforced concrete (RC) bridge columns[J]. Soil Dynamics and Earthquake Engineering, 2017, 97:48-59.
[6] 丁国, 陈隽. 序列型地震动物理随机模型研究[J]. 工程力学, 2017, 34(9):125-138. Ding Guo, Chen Jun. Study on physical random model of seismic sequences[J]. Engineering Mechanics, 2017, 34(9):125-138. (in Chinese)
[7] Helmstetter A, Sornette D. Båth's law derived from the Gutenberg-Richter law and from aftershock properties[J]. Geophysical research letters, 2003, 30(20):SDE11. 1-SDE11. 4.
[8] Båth M. Lateral inhomogeneities of the upper mantle[J]. Tectonophysics, 1965, 2(6):483-514.
[9] Goda K, Taylor C A. Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(15):2311-2330.
[10] Goda K. Nonlinear response potential of mainshock-aftershock sequences from Japanese earthquakes[J]. Bulletin of the seismological Society of America, 2012, 102(5):2139-2156.
[11] 杨成, 陈文龙, 徐腾飞. 余震地区桥梁施工过程易损性分析[J]. 工程力学, 2016, 33(增刊1):251-256. Yang Cheng, Chen Wenlong, Xu Tengfei. The vulnerability analysis of bridge construction in aftershock area[J]. Engineering Mechanics, 2016, 33(Suppl 1):251-256. (in Chinese)
[12] Han R, Li Y, Van De Lindt J. Assessment of seismic performance of buildings with incorporation of aftershocks[J]. Journal of Performance of Constructed Facilities, 2015, 29(3):04014088(1-17).
[13] 赵银刚, 刘庆杰, 王晨, 等. 基于线性回归分析的主余震相关关系[J]. 地震地磁观测与研究, 2017, 38(2):71-76. Zhao Yingang, Liu Qingjie, Wang Chen, et al. Correlation of the minshock-aftershock based on the linear regression[J]. Seismological and Geomagnetic Observation and Research, 2017, 38(2):71-76. (in Chinese)
[14] Yeo G L, Cornell C A. A probabilistic framework for quantification of aftershock ground-motion hazard in California:Methodology and parametric study[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(1):45-60.
[15] Kumitani S, Takada T. Probabilistic assessment of buildings damage considering aftershocks of earthquakes[J]. Journal of Structural & Construction Engineering, 2009, 74(74):459-465.
[16] 易桂喜, 龙锋, 张致伟. 汶川M_S8.0地震余震震源机制时空分布特征[J]. 地球物理学报, 2012, 55(4):1213-1227. Yi Guixi, Long Feng, Zhang Zhiwei. Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(4):1213-1227. (in Chinese)
[17] Li Y, Song R, Van De Lindt J W. Collapse fragility of steel structures subjected to earthquake mainshock aftershock sequences[J]. Journal of Structural Engineering, 2014, 140(12):04014095(1-10).
[18] Tothong P, Luco N. Probabilistic seismic demand analysis using advanced ground motion intensity measures[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13):1837-1860.
[19] Baker J W, Allin Cornell C. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(10):1193-1217.
[20] Baker J W, Allin Cornell C. Spectral shape, epsilon and record selection[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(9):1077-1095.
[21] Bommer J J, Martnez-Pereira A. The effective duration of earthquake strong motion[J]. Journal of Earthquake Engineering, 1999, 03(02):127-172.
[22] Iervolino I, Manfredi G, Cosenza E. Ground motion duration effects on nonlinear seismic response[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(1):21-38.
[23] Raghunandan M, Liel A B. Effect of ground motion duration on earthquake-induced structural collapse[J]. Structural Safety, 2013, 41:119-133.
[24] Kumar M, Castro J, Stafford P, et al. Influence of the mean period of ground motion on the inelastic dynamic response of single and multi degree of freedom systems[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(3):237-256.
[25] 于晓辉, 吕大刚, 肖寒. 主余震序列型地震动的增量损伤谱研究[J]. 工程力学, 2017, 34(3):47-53, 114. Yu Xiaohui, Lü Dagang, Xiao Han. Incremental damage spectra of mainshock-aftershock sequence-type ground motion[J]. Engineering Mechanics, 2017, 34(3):47-53, 114.
[26] Kim B, Shin M. A model for estimating horizontal aftershock ground motions for active crustal regions[J]. Soil Dynamics and Earthquake Engineering, 2017, 92:165-175.
[27] Ruiz-García J, Negrete-Manriquez J C. Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences[J]. Engineering Structures, 2011, 33(2):621-634.
[1] 刘亭亭, 于晓辉, 吕大刚. 地震动多元强度参数主成分与结构损伤的相关性分析[J]. 工程力学, 2018, 35(8): 122-129,137.
[2] 刘喜, 王洁, 吴涛, 魏慧. 深受弯构件抗剪影响参数显著性分析[J]. 工程力学, 2017, 34(7): 126-135.
[3] 宋帅, 钱永久, 吴刚. 桥梁系统地震易损性分析的混合Copula函数方法[J]. 工程力学, 2017, 34(1): 219-227.
[4] 董胜, 林逸凡. 固定测站的风向风速联合分布研究[J]. 工程力学, 2016, 33(6): 234-241.
[5] 宋帅, 钱永久, 吴刚. 基于Copula函数的桥梁系统地震易损性方法研究[J]. 工程力学, 2016, 33(11): 193-200,207.
[6] 朱瑞广, 于晓辉, 吕大刚. 基于地震动模拟的一致危险谱和条件均值谱生成及应用[J]. 工程力学, 2015, 32(增刊): 196-201.
[7] 高军,黄再兴. PBX炸药粘弹性损伤本构模型参数敏感度分析[J]. 工程力学, 2015, 32(2): 201-206.
[8] 唐小松,李典庆,周创兵,方国光. 样本数目对岩土体参数联合分布模型识别精度的影响[J]. 工程力学, 2015, 32(2): 1-11.
[9] 董胜, 李静静. 海洋平台环境设计参数的Plackett Copula分布估计[J]. 工程力学, 2015, 32(11): 251-256.
[10] 周生通, 李鸿光. 考虑相关性的Rackwitz-Fiessler随机空间变换方法[J]. 工程力学, 2014, 31(10): 47-55,61.
[11] 张春涛,李正良,范文亮,汪之松. 考虑风向风速联合分布的输电塔线体系风振疲劳研究[J]. 工程力学, 2013, 30(3): 315-322.
[12] 李典庆,吴帅兵,周创兵,方国光. 二维联合概率密度函数构造方法及结构并联系统可靠度分析[J]. 工程力学, 2013, 30(3): 37-45.
[13] 唐小松,李典庆,周创兵,方国光. 联合分布函数构造的Copula函数方法及结构可靠度分析[J]. 工程力学, 2013, 30(12): 8-17,42.
[14] 吴帅兵, 李典庆, 周创兵. 联合分布函数蒙特卡罗模拟及结构可靠度分析[J]. 工程力学, 2012, 29(9): 68-74.
[15] 吴帅兵, 李典庆, 周创兵. 二维联合分布函数构造方法及其对结构可靠度的影响分析[J]. 工程力学, 2012, 29(7): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日