工程力学 ›› 2019, Vol. 36 ›› Issue (2): 104-113.doi: 10.6052/j.issn.1000-4750.2017.12.0918

• 土木工程学科 • 上一篇    下一篇

牺牲-耗能型伸臂桁架的设计和试验研究

朱亚宁1, 林楷奇2, 蒋庆1, 林元庆3, 杨青顺4, 陆新征5   

  1. 1. 合肥工业大学土木与水利工程学院, 合肥 230009;
    2. 清华大学北京市钢与混凝土组合结构工程技术研究中心, 北京 100084;
    3. 中国核电工程有限公司郑州分公司, 郑州 450052;
    4. 青海大学土木工程学院, 西宁 810016;
    5. 清华大学土木工程安全与耐久教育部重点试验室, 北京 100084
  • 收稿日期:2017-12-07 修回日期:2018-03-09 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 陆新征(1978-),男,安徽人,教授,博士,主要从事结构非线性仿真研究(E-mail:luxz@tsinghua.edu.cn). E-mail:luxz@tsinghua.edu.cn
  • 作者简介:朱亚宁(1993-),女,浙江人,硕士生,主要从事高层结构抗震研究(E-mail:gdl16@mails.tsinghua.edu.cn);林楷奇(1990-),男,福建人,博士生,主要从事混凝土结构多灾害研究(E-mail:linjq13@mails.tsinghua.edu.cn);蒋庆(1984-),男,安徽人,副教授,博士,主要从事结构工程研究(E-mail:ahhfjq@163.com);林元庆(1974-),男,福建人,教授级高工,本科,结构总工程师/副院长,主要从事结构分析、设计及施工一体化技术研究及应用研究(E-mail:13526593105@126.com);杨青顺(1982-),女,青海人,讲师,博士,主要从事高层结构抗震研究(E-mail:yqss112@163.com).
  • 基金资助:
    国家自然科学基金项目(51778341,51408179);亚热带建筑科学国家重点实验室项目(2015ZA04)

DESIGN AND EXPERIMENTAL STUDY OF A SACRIFICIAL-ENERGY DISSIPATION OUTRIGGER

ZHU Ya-ning1, LIN Kai-qi2, JIANG Qing1, LIN Yuan-qing3, YANG Qing-shun4, LU Xin-zheng5   

  1. 1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China;
    2. Beijing Engineering Research Center of Steel and Concrete Composite Structures, Tsinghua University, Beijing 100084, China;
    3. China Nuclear Power Engineering Co., Ltd., Zhengzhou Branch, Zhengzhou 450052, China;
    4. School of Civil Engineering, Qinghai University, Xining 810016, China;
    5. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China
  • Received:2017-12-07 Revised:2018-03-09 Online:2019-02-22 Published:2019-02-22

摘要: 伸臂桁架是超高层建筑中的重要抗侧力构件。该文以一个超高层框架-核心筒-伸臂桁架结构为研究对象,分别采用普通伸臂桁架和防屈曲支撑(BRB)伸臂桁架进行独立设计,得到两个结构模型—普通伸臂桁架结构(CO)和BRB伸臂桁架结构(BO)。罕遇地震弹塑性分析结果表明,由于BO模型中的BRB伸臂桁架始终保持较高强度,反而导致结构中其他构件的塑性耗能比例增加,最终其塑性耗能效果不如CO模型中的普通伸臂桁架。因此,该文提出了一种新型牺牲-耗能型伸臂桁架,通过试验研究和有限元模拟分析了牺牲-耗能型伸臂桁架的主要设计参数及抗震性能。结果表明:牺牲-耗能型伸臂桁架的牺牲段和耗能段强度最优比为6∶4左右;将CO及BO模型中的伸臂桁架分别按照等刚等强原则替换成对应的牺牲-耗能型伸臂桁架后,结构中伸臂桁架的塑性耗能明显增加,剪力墙的塑性耗能明显减少,其他构件如连梁、梁的塑性耗能基本呈减少趋势,牺牲-耗能型伸臂桁架起到了保护结构中其他构件的作用。

关键词: 超高层建筑, 抗震分析, 普通伸臂桁架, BRB伸臂桁架, 牺牲-耗能型伸臂桁架, 塑性耗能

Abstract: Outriggers are key lateral force resisting members in super-tall buildings. A frame-core tube-outrigger super-tall building is chosen as the research object. The super-tall building is firstly designed through adopting conventional outriggers and buckling-restrained-brace (BRB) outriggers. Two schemes are derived after the structural design, designated as a conventional outrigger structure (CO) and a BRB outrigger structure (BO). By conducting the nonlinear time-history analyses of the two structures at maximum considered earthquake (MCE) level, it is found that the outriggers in building BO maintain high strength, which in return increases the relative ratio of dissipated inelastic energy in other structural components. Consequently, the BRB outriggers in building BO dissipate less energy than the conventional outriggers in building CO. In this study, a novel sacrificial-energy dissipation (SED) outrigger is proposed to increase the energy dissipating capacity of outriggers. The main design parameters and aseismic performance of the proposed outrigger are analyzed through both experimental studies and numerical simulations. The results indicate that the optimum strength ratio between the sacrificial part and the energy dissipating part of the SED outrigger is about 6:4. Through substituting the outriggers in both building CO and BO with the novel SED outriggers considering the principle of equal stiffness and equal strength, the new SED outrigger structures present more rational energy dissipation modes. The dissipated inelastic energy of outriggers increases significantly while that of the shear walls and other structural components decreases. Therefore, the novel SED outrigger is able to protect other structural components of super-tall buildings under MCEs.

Key words: super-tall buildings, seismic analysis, conventional outrigger, BRB outrigger, sacrificial-energy dissipation outrigger, dissipated inelastic energy

中图分类号: 

  • TU973.2
[1] 丁洁民, 吴宏磊, 赵昕. 我国高度250 m以上超高层建筑结构现状与分析进展[J]. 建筑结构学报, 2014, 35(3):1-7. Ding Jiemin, Wu Honglei, Zhao Xin. Current situation and discussion of structural design for super high-rise buildings above 250 m in China[J]. Journal of Building Structures, 2014, 35(3):1-7. (in Chinese)
[2] 程骥. 框架-核心筒-伸臂桁架结构体系受力性能研究[D]. 武汉:武汉理工大学, 2012. Cheng Ji. Research on the mechanical properties of frame-core-outrigger structural system[D]. Wuhan:Wuhan University of Technology, 2012. (in Chinese)
[3] 吕西林, 程明. 超高层建筑结构体系的新发展[J]. 结构工程师, 2008, 24(2):99-106. Lü Xilin, Cheng Ming. Recent development of structural systems for super tall buildings[J]. Structural Engineers, 2008, 24(2):99-106. (in Chinese)
[4] 邢丽丽, 周颖. 普通伸臂桁架与屈曲约束支撑型伸臂桁架最优布置方案分析[J]. 建筑结构学报, 2015, 36(12):1-10. Xing Lili, Zhou Ying. Optimization analysis of ordinary outrigger trusses and outrigger trusses with buckling restrained braces[J]. Journal of Building Structures, 2015, 36(12):1-10. (in Chinese)
[5] 赵宪忠, 王斌, 陈以一, 等. 上海中心大厦伸臂桁架与巨柱和核心筒连接的静力性能试验研究[J]. 建筑结构学报, 2013, 34(2):20-28. Zhao Xianzhong, Wang Bin, Chen Yiyi, et al. Monotonic static tests on outrigger truss and its connection with mega column and core tube of the Shanghai Tower[J]. Journal of Building Structures, 2013, 34(2):20-28. (in Chinese)
[6] 陈以一, 王斌, 赵宪忠, 等. 上海中心大厦伸臂桁架与巨柱和核心筒连接的抗震性能试验研究[J]. 建筑结构学报, 2013, 34(2):29-36. Chen Yiyi, Wang Bin, Zhao Xianzhong, et al. Hysteretic tests on outrigger truss and its connection with mega column and core tube of the Shanghai Tower[J]. Journal of Building Structures, 2013, 34(2):29-36. (in Chinese)
[7] 聂建国, 丁然, 樊健生, 等. 武汉中心伸臂桁架-核心筒剪力墙节点抗震性能试验研究[J]. 建筑结构学报, 2013, 34(9):1-12. Nie Jianguo, Ding Ran, Fan Jiansheng, et al. Experimental research on seismic behavior of outrigger truss-wall joint in super high-rise building of Wuhan Center[J]. Journal of Building Structures, 2013, 34(9):1-12. (in Chinese)
[8] 严鹏, 王伟, 陈以一. 钢管混凝土柱与伸臂桁架连接节点试验研究[J]. 工程力学, 2013, 30(增刊):78-82. Yan Peng, Wang Wei, Chen Yiyi. Experimental study on concrete filled steel tube column to outrigger truss connection[J]. Engineering Mechanics, 2013, 30(Suppl):78-82. (in Chinese)
[9] 杨青顺. 耗能伸臂桁架试验及设计方法研究[D]. 北京:清华大学, 2017. Yang Qingshun. Experimental and design method study of energy dissipating outriggers[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[10] 卢啸. 超高巨柱-核心筒-伸臂结构地震灾变及抗震性能研究[D]. 北京:清华大学, 2013. Lu Xiao. Study on the collapse simulation and seismic performance of super tall mega column-core tube-outrigger buildings[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[11] 陆新征, 卢啸, 李梦珂, 等. 上海中心大厦结构抗震分析简化模型及地震耗能分析[J]. 建筑结构学报, 2013, 34(7):1-10. Lu Xinzheng, Lu Xiao, Li Mengke, et al. Study on simplified modeling and energy dissipation distribution of the Shanghai Tower[J]. Journal of Building Structures, 2013, 34(7):1-10. (in Chinese)
[12] Fan H, Li Q S, Tuan A Y, et al. Seismic analysis of the world's tallest building[J]. Journal of Constructional Steel Research, 2009, 65(5):1206-1215.
[13] Li Q S, Wu J R. Correlation of dynamic characteristics of a super-tall building from full scale measurements and numerical analysis with various finite element models[J]. Earthquake Engineering and Structural Dynamics, 2004, 33(14):1311-1336.
[14] Jiang H J, Lu X L, Liu X J, et al. Performance-based seismic design principles and structural analysis of Shanghai Tower[J]. Advances in Structural Engineering, 2014, 17(4):513-528.
[15] Moehle J. Seismic design of reinforced concrete buildings[M]. New York:McGraw-Hill Education, 2015:755-758.
[16] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2010. JGJ 3-2010, Technical specification for concrete structures of tall building[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[17] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[18] 陆文忠, 吕西林. 武汉人信汇高位裙房双塔超限高层抗震分析和性能化设计[J]. 建筑结构, 2016, 46(6):12-19. Lu Wenzhong, Lü Xilin. Seismic analysis and performance-based design of a tall twin-tower beyond code limits with high-rise podium for Wuhan Ren Xin Hui[J]. Building Structure, 2016, 46(6):12-19. (in Chinese)
[19] Poon D, Hsiao L, Zhu Y, et al. Non-linear time history analysis for the performance based design of Shanghai Tower[C]//Structures Congress:Las Vegas. Reston. Virginia:ASCE, 2011:541-551.
[20] PEER Center. PEER ground motion database[DB/OL]. http://ngawest2.berkeley.edu/, 2018-06-20.
[21] GB 50017-2003, 钢结构设计规范[S]. 北京:中国计划出版社, 2003. GB 50017-2003, Code for design of steel structures[S]. Beijing:China Planning Press, 2003. (in Chinese)
[22] FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings[R]. Washington D C:Federal Emergency Management Agency, 2000.
[23] 杨青顺, 甄伟, 解琳琳, 等. 耗能伸臂桁架抗震性能试验研究[J]. 工程力学, 2016, 33(10):76-85. Yang Qingshun, Zhen Wei, Xie Linlin, et al. Experimental study on the seismic performance of energy dissipation outriggers[J]. Engineering Mechanics, 2016, 33(10):76-85. (in Chinese)
[24] 赖寒, 何志军, 丁洁民. 上海中心大厦考虑施工过程的竖向变形及差异分析与研究[J]. 结构工程师, 2011, 27(6):14-21. Lai Han, He Zhijun, Ding Jiemin. Analysis and research of vertical deformation difference of Shanghai Tower considering construction process[J]. Structural Engineers, 2011, 27(6):14-21. (in Chinese)
[25] 董志君, 滕军, 郭伟亮. 深圳京基金融中心的施工过程力学性能分析[J]. 建筑结构学报, 2010(增刊1):409-412. Dong Zhijun, Teng Jun, Guo Weiliang. Staged construction analysis and application of mechanical performance on Jingji Commercial Centre[J]. Journal of Building Structures, 2010(Suppl1):409-412. (in Chinese)
[1] 陆新征, 顾栋炼, 周建龙, 包联进, 钱鹏, 卢啸, 林元庆. 改变框架-核心筒结构剪力调整策略对其抗震性能影响的研究[J]. 工程力学, 2019, 36(1): 183-191,215.
[2] 张立红, 胡晓, 曾迪, 周德才, 毛宇, 吕玮. 基于抗震性能的高烈度区高端阀厅选型研究[J]. 工程力学, 2018, 35(S1): 320-324.
[3] 易江, 莫金生, 李建中. 强震作用下独塔斜拉桥拉索松弛现象研究[J]. 工程力学, 2018, 35(6): 97-104,114.
[4] 杨青顺, 甄伟, 陆新征, 解琳琳, 林楷奇. 带端部阻尼器伸臂桁架的抗震性能试验研究[J]. 工程力学, 2018, 35(2): 47-58.
[5] 王磊, 梁枢果, 张振华, 王述良, 邹良浩, 汤怀强. 超高层建筑横风向气动阻尼比评估方法研究[J]. 工程力学, 2017, 34(1): 145-153.
[6] 侯钢领, 李祯, 贾晓飞, 宋天舒. 储液结构隔震优化模型及其影响参数分析[J]. 工程力学, 2016, 33(增刊): 312-319.
[7] 钟振宇, 楼文娟. 基于风重耦合效应超高层建筑顺风向等效静力风荷载[J]. 工程力学, 2016, 33(5): 74-81.
[8] 杨青顺, 甄伟, 解琳琳, 陆新征. 耗能伸臂桁架抗震性能的试验研究[J]. 工程力学, 2016, 33(10): 76-85.
[9] 吴庆雄,黄育凡,陈宝春. 钢管混凝土组合桁梁-格构墩轻型桥梁振动台阵试验研究[J]. 工程力学, 2014, 31(9): 89-96.
[10] 黄福云,李建中,陈宝春,吴庆雄. 钢管混凝土单圆管拱结构振动台阵试验研究[J]. 工程力学, 2014, 31(4): 82-92.
[11] 聂建国,丁然,樊健生. 超高层建筑伸臂桁架-核心筒剪力墙节点受力性能数值与理论研究[J]. 工程力学, 2014, 31(1): 46-55.
[12] 张海顺,姜忻良,张亚楠. 高架桥-地铁站-桩-土复杂结构体系地震反应分析[J]. 工程力学, 2013, 30(增刊): 53-58.
[13] 刘昊苏,董军,杨昀. 不同设计参数下矮塔斜拉桥的抗震动力学分析[J]. 工程力学, 2013, 30(增刊): 137-141.
[14] 李晰,张德义,闫维明,陈彦江. 基于环境激励的钢管混凝土拱桥工作模态识别及修正[J]. 工程力学, 2013, 30(9): 81-88.
[15] 闫维明,李晰,陈彦江,李勇,顾大鹏. 钢管混凝土拱桥台阵试验研究:场地条件的影响[J]. 工程力学, 2013, 30(6): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日