工程力学 ›› 2019, Vol. 36 ›› Issue (2): 96-103.doi: 10.6052/j.issn.1000-4750.2017.12.0915

• 土木工程学科 • 上一篇    下一篇

脆性各向异性岩石破坏过程数值模拟

姚池1, 何忱1, 蒋水华1, 杨建华1, 姜清辉1,2   

  1. 1. 南昌大学 建筑工程学院, 南昌 330031;
    2. 武汉大学 土木建筑工程学院, 武汉 430072
  • 收稿日期:2017-12-04 修回日期:2018-09-20 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 蒋水华(1987-),男,江西人,副教授,博士,主要从事岩石边坡可靠度问题研究(E-mail:sjiangaa@ncu.edu.cn). E-mail:sjiangaa@ncu.edu.cn
  • 作者简介:姚池(1986-),男,湖北人,副教授,博士,主要从事与岩石细观破坏和水力耦合数值模型研究(E-mail:chi.yao@ncu.edu.cn);何忱(1994-),男,江西人,硕士生,主要从事三维裂隙岩体渗流数值模型研究(E-mail:c.he_daniel@foxmail.com);杨建华(1986-),男,湖北人,副教授,博士,主要从事与工程爆破相关的岩石动力学研究(E-mail:yangjianhua86@ncu.edu.cn);姜清辉(1972-),男,江西人,教授,博士,博导,主要从事岩土力学数值方法的教学与研究(E-mail:jqh1972@yahoo.com.cn).
  • 基金资助:
    国家自然科学基金项目(41762020,U1765207,51769014,51879127)

NUMERICAL SIMULATION OF DAMAGE AND FAILURE PROCESS IN ANISOTROPIC BRITTLE ROCKS

YAO Chi1, HE Chen1, JIANG Shui-hua1, YANG Jian-hua1, JIANG Qing-hui1,2   

  1. 1. School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China;
    2. School of Civil Engineering, Wuhan University, Wuhan 430072, China
  • Received:2017-12-04 Revised:2018-09-20 Online:2019-02-22 Published:2019-02-22

摘要: 在改进刚体弹簧方法的基础上,采用Hoek-Brown准则判断界面破坏,提出各向异性Voronoi网格的生成方法,并引入界面细观参数各向异性的赋值函数,最终建立了脆性各向异性岩石损伤破坏过程的数值模拟方法。利用该方法对文献中的试验结果进行了模拟。计算表明,该方法不仅能成功模拟岩石抗压强度随软弱面倾角变化的“U”形规律,定量上与试验结果吻合良好,而且能同时定量模拟岩石变形特性即弹性模量和泊松比的各向异性特征。

关键词: 岩石破坏, 各向异性, 裂隙扩展, 刚体弹簧方法, 细观模型

Abstract: Based on an improved rigid block spring method, using Hoek-Brown criterion as a failure criterion, a numerical model for the simulation of failure process of brittle anisotropic rock is established. In this model, a method for generating anisotropic Voronoi mesh and a function for anisotropic micro parameters assignment are introduced. Then the model is used for the simulation of experiments in published literatures. It indicates that: this method cannot only capture the ‘U’ type curve of compressive strength with regards to the bedding plane orientation and matches well with experiment results in a quantitative manner, but also has the ability to simulate the anisotropic characteristics of deformation qualitatively and quantitatively at the same time.

Key words: rock failure, anisotropy, crack propagation, Rigid block spring method, mesoscopic modeling

中图分类号: 

  • TU452
[1] Hudson J A, Harrison J P, Popescu M E. et al. Engineering rock mechanice-an introduction to the principles[J]. Applied Mechanics Reviews, 2002, 55(2):72.
[2] Kranz R L. Microcracks in rocks:a review[J]. Tectonophysics, 1983, 100(1):449-480.
[3] 杨雪强, 李子生, 燕全会, 等. 横观各向同性岩石类材料的破坏准则[J]. 工程力学, 2012, 29(12):328-333. Yang Xueqiang, Li Zisheng, Yan Quanhui, et al. Failure criterion for transversely isotropic rock materials[J]. Engineering Mechanics, 2012, 29(12):328-333. (in Chinese)
[4] 赵颖. 各向异性双重孔隙介质的应力与油水两相渗流耦合理论模型[J]. 工程力学, 2012, 29(2):222-229. Zhao Ying. Fully coupled dual-porosity model for oil-water two-phase flow in anisotropic formations[J]. Engineering Mechanics, 2012, 29(2):222-229. (in Chinese)
[5] Ju J W. On energy-based coupled elastoplastic damage theories:Constitutive modeling and computational aspects[J]. International Journal of Solids and Structures, 1989, 25(7):803-833.
[6] Chow C L, Wang J. An anisotropic theory of elasticity for continuum damage mechanics[J]. International Journal of Fracture, 1987, 33(1):3-16.
[7] Swoboda G, Yang Q. An energy-based damage model of geomaterials-Ⅱ. Deduction of damage evolution laws[J]. International Journal of Solids and Structures, 1999, 36(12):1735-1755.
[8] 胡大伟, 朱其志, 周辉, 等. 脆性岩石各向异性损伤和渗透性演化规律研究[J]. 岩石力学与工程学报, 2008, 27(9):1822-1827. Hu Dawei, Zhu Qizhi, Zhou Hui, et al. Research on anisotropic damage and permeability evolutionary law for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9):1822-1827. (in Chinese)
[9] 周建军, 周辉, 邵建富. 脆性岩石各向异性损伤和渗流耦合细观模型[J]. 岩石力学与工程学报, 2007, 26(2):368-373. Zhou Jianjun, Zhou Hui, Shao Jianfu. Coupled micromechanical model for anisotropic damage and permeability variation in brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2):368-373. (in Chinese)
[10] 朱合华, 黄伯麒, 张琦, 等. 基于广义Hoek-Brown准则的弹塑性本构模型及其数值实现[J]. 工程力学, 2016, 33(2):41-49. Zhu Hehua, Huang Boqi, Zhang Qi, et al. Elastoplastic rock constitutive model based on generalized Hoek-Brown strength criterion and its numerical implementation[J]. Engineering Mechanics, 2016, 33(2):41-49. (in Chinese)
[11] Andrieux S, Bamberger Y, Marigo J J. Un modèle de matériau microfissuré pour les roches et les bétons[J]. Journal de Mécanique Théorique et Appliquée, 1986, 5(3):471-513.
[12] Gambarotta L, Lagomarsino S. A microcrack damage model for brittle materials[J]. International Journal of Solids and Structures, 1993, 30(2):177-198.
[13] Pensee V, Kondo D, Dormieux L. Micromechanical analysis of anisotropic damage in brittle materials[J]. Journal of Engineering Mechanics, 2002, 128(8):889-897.
[14] 朱其志, 胡大伟, 周辉, 等. 基于均匀化理论的岩石细观力学损伤模型及其应用研究[J]. 岩石力学与工程学报, 2008, 27(2):266-272. Zhu Qizhi, Hu Dawei, Zhou Hui, et al. Research on homogenization-based mesomechanical damage model and its application[J]. 2008, 27(2):266-272. (in Chinese)
[15] 陈进, 陈祥福. 岩石工程渐进破坏分析的边界元法[J]. 工程力学, 1991, 8(4):128-137. Chen Jin, Chen Xiangfu. Boundary element method for non-linear analysis the progressive failure of rock engineering[J]. Engineering Mechanics, 1991, 8(4):128-137. (in Chinese)
[16] Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear mechanical properties of composites[J]. Comptes Rendus de l'Académie des Sciences. Série Ⅱ, Mécanique, Physique, Chimie, Astronomie, 1994, 318(11):1417-1423.
[17] Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 157(1):69-94.
[18] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1329-1364.
[19] Munjiza A, Owen D R J, Bicanic N. A combined finite-discrete element method in transient dynamics of fracturing solids[J]. Engineering Computations, 1995, 12(2):145-174.
[20] 唐春安, 赵文. 岩石破裂全过程分析软件系统RFPA2D[J]. 岩石力学与工程学报, 1997, 16(5):507-508. Tang Chunan, Zhao Wen. RFPA2D system for rock failure process analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(5):507-508. (in Chinese)
[21] Zhang Z N. Discretized virtual internal bond model for nonlinear elasticity[J]. International Journal of Solids and Structures, 2013, 50(22-23):3618-3625.
[22] Zhang Z N, Yao Y, Mao X. Modeling wave propagation induced fracture in rock with correlated lattice bond cell[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78:262-270.
[23] 潘鹏志, 丁梧秀, 冯夏庭, 等. 预制裂纹几何与材料属性对岩石裂纹扩展的影响研究[J]. 岩石力学与工程学报, 2008, 27(9):1882-1889. Pan Pengzhi, Ding Wuxiu, Feng Xiating, et al. Research on influence of pre-existing crack geometrical and material properties on crack propagation in rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9):1882-1889. (in Chinese)
[24] 姚池, 姜清辉, 邵建富, 等. 一种模拟岩石破裂的细观数值计算模型[J]. 岩石力学与工程学报, 2013, 32(增刊2):3146-3153. Yao Chi, Jiang Qinghui, Shao Jianfu, et al. A mesoscopic numerical model for simulation of rock fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl 2):3146-3153. (in Chinese)
[25] Yao C, Jiang Q H, Shao J F. Numerical simulation of damage and failure in brittle rocks using a modified rigid block spring method[J]. Computers and Geotechnics, 2015, 64:48-60.
[26] 梁正召, 唐春安, 李厚祥, 等. 单轴压缩下横观各向同性岩石破裂过程的数值模拟[J]. 岩土力学, 2005, 26(1):57-62. Liang Zhengzhao, Tang Chunan, Li Houxiang, et al. A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression[J]. Rock and Soil Mechanics, 2005, 26(1):57-62. (in Chinese)
[27] Lisjak A, Tatone B S A, Grasselli G, et al. Numerical modelling of the anisotropic mechanical behaviour of opalinus clay at the laboratory-scale using fem/dem[J]. Rock Mechanics and Rock Engineering, 2014, 47(1):187-206.
[28] 姚池, 李瑶, 姜清辉, 等. 应力作用下软硬互层岩石破裂过程的细观模拟[J]. 岩石力学与工程学报, 2015, 34(8):1542-1551. Yao Chi, Li Yao, Jiang Qinghui, et al. Mesoscopic model of failure process of interlayered rock under compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8):1542-1551. (in Chinese)
[29] Zhang Z N, Chen Y. Simulation of fracture propagation subjected to compressive and shear stress field using virtual multidimensional internal bonds[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(6):1010-1022.
[30] 张振南, 陈永泉. 一种模拟节理岩体破坏的新方法:单元劈裂法[J]. 岩土工程学报, 2009, 31(12):1858-1865. Zhang Zhennan, Chen Yongquan. Novel numerical approach to jointed rock mass simulation:Element partition method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 31(12):1858-1865. (in Chinese)
[31] 姚池, 李瑶, 姜清辉, 等. 基于改进刚体弹簧方法的开挖损伤演化分析[J]. 岩石力学与工程学报, 2015, 34(10):1959-1966. Yao Chi, Li Yao, Jiang Qinghui, et al. Numerical simulation of excavation damaged zone using the modified rigid body spring method[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10):1959-1966. (in Chinese)
[32] Fortune S. A sweepline algorithm for Voronoi diagrams[J]. Algorithmica, 1987, 2(1/2/3/4):153-174.
[33] Niandou H, Shao J F, Henry J P, et al. Laboratory investigation of the mechanical behaviour of tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1):3-16.
[1] 唐欣薇, 黄文敏, 周元德, 张楚汉. 层状岩石细观构造表征及劈拉受载各向异性行为研究[J]. 工程力学, 2018, 35(9): 153-160.
[2] 胡君逸, 李跃明, 李海波, 程昊. 考虑热应力、热变形正交各向异性板的动特性及响应规律[J]. 工程力学, 2018, 35(8): 218-229.
[3] 杨永宝, 危银涛. 弹性基础上正交各向异性圆柱壳的自由振动[J]. 工程力学, 2018, 35(4): 24-32.
[4] 姚仰平, 田雨, 刘林. 三维各向异性砂土UH模型[J]. 工程力学, 2018, 35(3): 49-55.
[5] 宋国荣, 刘明坤, 吕炎, 刘宏业, 吴斌, 何存富. 正交各向异性空心圆柱体中的纵向导波[J]. 工程力学, 2018, 35(3): 218-226.
[6] 张帅, 金浏, 李冬, 杜修力. 结构尺寸对钢筋混凝土短柱抗震性能影响:细观分析[J]. 工程力学, 2018, 35(12): 164-174.
[7] 金浏, 苏晓, 杜修力. 钢筋混凝土梁受弯破坏及尺寸效应的细观模拟分析[J]. 工程力学, 2018, 35(10): 27-36.
[8] 程振, 方秦, 张锦华, 张亚栋. 闭孔泡沫金属三维细观模型建模方法[J]. 工程力学, 2017, 34(8): 212-221.
[9] 应宏伟, 王小刚, 张金红, 周建, 朱成伟. 各向异性软黏土基坑抗隆起稳定极限平衡分析[J]. 工程力学, 2016, 33(9): 131-137.
[10] 钟卫洲, 邓志方, 黄西成, 郝志明. 中应变率加载下云杉各向异性力学行为研究[J]. 工程力学, 2016, 33(5): 25-33.
[11] 王发杰, 张耀明, 公颜鹏. 改进的基本解法在薄体各向异性位势Cauchy问题中的应用[J]. 工程力学, 2016, 33(2): 18-24.
[12] 李晶, 谢新宇, 张继发, 周建, 应宏伟. 基于亚塑性理论建立土体各向异性本构模型的一种新途径[J]. 工程力学, 2016, 33(2): 152-159.
[13] 李庶林, 林朝阳, 毛建喜, 黄玉仁, 胡静云. 单轴多级循环加载岩石声发射分形特性试验研究[J]. 工程力学, 2015, 32(9): 92-99.
[14] 肖闪闪, 陈普会. 集中载荷下四边固支正交各向异性矩形板的线性弯曲问题[J]. 工程力学, 2015, 32(6): 28-32.
[15] 于磊, 赵阳, 王震. 考虑膜材各向异性的膜结构褶皱分析[J]. 工程力学, 2015, 32(6): 183-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日