工程力学 ›› 2019, Vol. 36 ›› Issue (2): 87-95.doi: 10.6052/j.issn.1000-4750.2017.11.0904

• 土木工程学科 • 上一篇    下一篇

基于环境激励法的高层钢筋混凝土剪力墙结构自振周期经验公式研究

闫培雷, 孙柏涛   

  1. 中国地震局工程力学研究所, 中国地震局地震工程与工程震动重点实验室, 黑龙江, 哈尔滨 150080
  • 收稿日期:2017-11-27 修回日期:2018-03-20 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 孙柏涛(1961-),男,黑龙江人,研究员,博士,博导,主要从事地震工程和工程力学研究(E-mail:sunbt@iem.cn). E-mail:sunbt@iem.cn
  • 作者简介:闫培雷(1982-),男,黑龙江人,副研究员,博士,主要从事地震工程和工程力学研究(E-mail:yanpeilei325@163.com).
  • 基金资助:
    中国地震局工程力学研究所基本科研业务费专项(2014B11);国家自然科学基金青年科学基金项目(51508531);中国地震局创新团队发展计划资助项目(中国大陆地区地震灾害模拟与评估)

STUDY ON EMPIRICAL FORMULA OF NATURAL VIBRATION PERIOD OF HIGH-RISE REINFORCED CONCRETE SHEAR WALL STRUCTURE BASED ON ENVIRONMENTAL MOTIVATION METHOD

YAN Pei-lei, SUN Bai-tao   

  1. Institute of Engineering Mechanics, China Earthquake Administration;Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration, Harbin, Heilongjiang 150080 China
  • Received:2017-11-27 Revised:2018-03-20 Online:2019-02-22 Published:2019-02-22

摘要: 基于环境激励法对97栋高度在45 m~100 m的高层钢筋混凝土剪力墙结构进行动力性能测试,识别结构在水平纵、横两个方向上的基本自振周期、第二阶自振周期和第三阶自振周期。对前三阶自振周期进行回归分析,分析各主轴方向上高宽比对前三阶自振周期的影响,给出水平纵、横两个方向上前三阶自振周期的经验公式及其分布范围,给出统计学意义上的高阶自振周期与基本自振周期间的关系,并利用两个相关结构算例对公式的可靠性、有效性进行验证。该文的研究是对《建筑结构荷载规范》(GB 50009—2012)中结构自振周期经验公式相关规定的补充和完善。

关键词: 高层钢筋混凝土剪力墙结构, 环境激励法, 自振周期, 高阶振型, 经验公式, 回归分析

Abstract: A total of 97 high-rise reinforced concrete shear wall structures with the height between 45 m and 100m were selected for the vibration tests based on the environmental motivation method in order to identify the fundamental period, the second natural period and the third natural period in the horizontal and longitudinal directions. The regression analysis was employed to analyze the effect of the height-width ratio to the natural vibration period periods. The empirical formula for the natural vibration period and distribution range of the high-rise reinforced concrete shear wall were presented. The relation between a high order natural vibration period and the fundamental period were statistically developed. The formulas were verified by using two examples. The research is a supplement and perfection to the relevant regulations of the empirical formula of the structural natural vibration period in the Load code for the design of building structures (GB 50009—2012).

Key words: high-rise reinforced concrete shear wall structure, environmental motivation method, natural vibration period, higher-order mode, emprical formula, regression analysis

中图分类号: 

  • TU973+.16
[1] 方鄂华. 高层建筑钢筋混凝土结构概念设计[M]. 第二版. 北京:机械工业出版社, 2014:3-4. Fang Ehua. The concept of high-rise building reinforced concrete structure design[M]. Second Edition. Beijing:Mechanical Industry Press, 2014:3-4. (in Chinese)
[2] 汪梦甫, 王义俊. 高阻尼混凝土带钢板暗支撑双肢剪力墙抗震性能试验研究[J]. 工程力学, 2017, 34(1):204-212. Wang Mengfu, Wang Yijun. Study on seismic performance of high damping concrete coupled shear walls with concealed steel plate bracings[J]. Engineering Mechanics, 2017, 34(1):204-212. (in Chinese)
[3] 徐龙河, 肖水晶, 卢啸, 等. 钢筋混凝土剪力墙基于变形和滞回耗能非线性组合的损伤演化分析[J]. 工程力学, 2017, 34(8):117-124. Xu Longhe, Xiao Shuijing, Lu Xiao, et al. Damage evolution analysis of RC shear wall based on nonlinear combination of deformation and hysteretic energy[J]. Engineering Mechanics, 2017, 34(8):117-124. (in Chinese)
[4] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017, 34(9):43-53. Li Xiaojun, Li Xiaohu. Study on in-plane flexural behavior of double steel plate and concrete infill composite shear walls for nuclear engineering[J]. Engineering Mechanics, 2017, 34(9):43-53. (in Chinese)
[5] 王先铁, 刘立达, 杨航东, 等. 方钢管混凝土框架内置两侧开洞薄钢板剪力墙的抗震性能研究[J]. 工程力学, 2017, 34(3):162-172. Wang Xiantie, Liu Lida, Yang Hangdong, et al. Seismic study of concrete-filied square steel tubular frame-thin steel plate shear walls with two-side openings[J]. Engineering Mechanics, 2017, 34(3):162-172. (in Chinese)
[6] Goel R K, Chopra A K. Period formulas for moment resisting frame buildings[J]. Journal of Structural Engineering, 1997, 123(11):1454-1461.
[7] Goel R K, Chopra A K. Period formulas for concrete shear wall buildings[J]. Journal of Structural Engineering, 1998, 124(4):426-433.
[8] Lee L H, Chang K K, Chun Y S. Experimental formula for the fundamental period of RC buildings with shear-wall dominant systems[J]. The Structural Design of Tall Buildings, 2000, 9(4):295-307.
[9] Chopra A K, Goel R K. Building period formula for estimating seismic displacements[J]. Earthquake Spectra, 2000, 16(2):533-536.
[10] Balkaya C, Kalkan E. Estimation of fundamental periods of shear-wall dominant building structures[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(7):985-998.
[11] Ghrib F, Mamedov H. Period formulas of shear-wall buildings with flexible bases[J]. Earthquake Engineering and Structural Dynamics, 2004, 33(3):295-314.
[12] Shahrour K S. Influence of the soil-structure interaction on the fundamental period of buildings[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(3):2445-2553.
[13] Oh-Sung K, Eung S K. Evaluation of building period formulas for seismic design[J]. Earthquake Engineering and Structural Dynamics, 2010, 39(3):1569-1583.
[14] 方鄂华, 钱稼茹, 马镇炎. 高层钢结构基本周期的经验公式[J]. 建筑结构学报, 1993, 14(2):59-62. Fang Ehua, Qian Jiaru, Ma Zhenyan. The empirical formula of high-rise steel structure basic period[J]. Journal of Building Structures, 1993, 14(2):59-62. (in Chinese)
[15] 刘红彪, 郭迅. 9度设防区房屋结构自振周期测试[J]. 建筑结构, 2011, 41(5):60-62, 77. Liu Hongbiao, Guo Xun. Test of natural vibration period of building structure in 9 degree fortification zone[J]. Building Structure, 2011, 41(5):60-62, 77. (in Chinese)
[16] 施卫星, 魏丹, 韩瑞龙. 钢结构房屋动力特性脉动法测试研究[J]. 地震工程与工程振动, 2012, 32(1):114-120. Shi Weixing, Wei Dan, Han Ruilong. Study on dynamic characteristics test of steel structure buildings by pulsation method[J]. Earthquake Engineering and Engineering Vibration, 2012, 32(1):114-120. (in Chinese)
[17] GB 50009-2012, 建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB 50009-2012, Building structural load code[S]. Beijing:China Architecture& Building Press, 2012. (in Chinese)
[18] 中国建筑科学研究院建筑结构研究所. 高层建筑结构设计[M]. 北京:科学出版社, 1985:58-59. Institute of Building Construction, China Academy of Building Research. Structural design of high rise building[M]. Beijing:Science Press, 1985:58-59. (in Chinese)
[19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture& Building Press, 2010. (in Chinese)
[20] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2010. JGJ 3-2010, Technical specification for concrete structures of tall buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[21] 王广军, 樊水荣. 关于实测自振周期修正系数取值的建议[J]. 工程抗震, 1988(4):23-29. Wang Guangjun, Fan Shuirong. Suggestion on the value of correction factor of measured natural vibration period[J]. Engineering Earthquake Resistance, 1988(4):23-29. (in Chinese)
[22] 徐培福, 肖从真, 李建辉. 高层建筑结构自振周期与结构高度关系及合理范围研究[J]. 土木工程学报, 2014, 47(2):1-11. Xu Peifu, Xiao Congzhen, Li Jianhui. Study on the relationship between the natural vibration period and structural height of high-rise building and its reasonable range[J]. Chinese Journal of Civil Engineering, 2014, 47(2):1-11. (in Chinese)
[1] 赵志, 戴靠山, 毛振西, 张采薇. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
[2] 张锐, 成虎, 吴浩, 王东升. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6): 162-172.
[3] 李炜, 潘文豪, 樊健生. 海上风机单立柱三桩基础灌浆连接段轴向承载力试验研究[J]. 工程力学, 2016, 33(11): 148-154.
[4] 陈斌,叶俊能,朱剑锋,刘干斌,贾波. 宁波轨道交通地基土体物理参数概率分布及相关性研究[J]. 工程力学, 2013, 30(增刊): 200-205.
[5] 崔定宇, 辛克贵, 祁泉泉. 扩展特征系统实现算法的模态参数识别特性研究[J]. 工程力学, 2013, 30(8): 49-53.
[6] 白冰,张清华,李乔. 结构二次二阶矩可靠度指标的回归分析预测算法[J]. 工程力学, 2013, 30(10): 219-226,235.
[7] 沈飞, 楼梦麟. 超高层建筑地震反应中高阶振型影响分析[J]. 工程力学, 2012, 29(增刊I): 23-28.
[8] 徐毅青,唐益群,任兴伟,王元东,叶桂明. 地铁振动荷载作用下隧道周围加固软黏土动弹性模量试验[J]. 工程力学, 2012, 29(7): 250-256,269.
[9] 宁鹏飞 唐德高. 装药偏差对小比例内爆炸试验结果影响分析[J]. 工程力学, 2012, 29(12): 322-327.
[10] 周 洋,施卫星,韩瑞龙. 多层大开间砌体结构的基本周期实测与分析[J]. 工程力学, 2012, 29(11): 197-204.
[11] 刘艳辉;赵世春;强士中. 阻尼比对延性需求谱的影响[J]. 工程力学, 2011, 28(5): 200-206.
[12] 肖煌俊;刘卫东;谈晓青;杨伟波. 历史保护建筑砖材强度检测方法研究[J]. 工程力学, 2010, 27(增刊Ⅱ): 276-279.
[13] 唐冰松;韩晓林. 一种基于结构动态特性的物理参数识别算法及应用[J]. 工程力学, 2009, 26(6): 21-026.
[14] 冯 健;蒋友宝;孟少平;许 玮. 小样本下结构系统可靠度分析方法的研究[J]. 工程力学, 2007, 24(9): 0-042.
[15] 梅志远;朱锡;张立军. 高速破片穿透船用钢靶剩余特性研究[J]. 工程力学, 2005, 22(4): 235-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日