工程力学 ›› 2019, Vol. 36 ›› Issue (2): 26-35,52.doi: 10.6052/j.issn.1000-4750.2017.11.0902

• 基本方法 • 上一篇    下一篇

基于RANS对考虑风向随高度偏转的大气边界层自保持研究

冯成栋, 顾明   

  1. 同济大学土木工程防灾国家重点实验室, 上海 200092
  • 收稿日期:2017-11-27 修回日期:2018-07-24 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 顾明(1957-),男,江苏人,教授,博士,博导,从事土木工程抗风研究(E-mail:minggu@tongji.edu.cn). E-mail:minggu@tongji.edu.cn
  • 作者简介:冯成栋(1992-),男,山西人,博士生,从事土木工程抗风研究(E-mail:1510177@tongji.edu.cn).
  • 基金资助:
    国家自然科学基金重大研究计划项目(90715040,91215302);土木工程防灾国家重点实验室课题项目(SLDRCE15-A-04)

STUDY ON SELF-SUSTAINED ATMOSPHERIC BOUNDARY LAYER CONSIDERING WIND VEERING WITH HEIGHT BASED ON RANS

FENG Cheng-dong, GU Ming   

  1. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2017-11-27 Revised:2018-07-24 Online:2019-02-22 Published:2019-02-22

摘要: 从基本方程出发,通过调整k-ε模型基本参数,对考虑风向随高度偏转的不可压缩中性层结水平均匀稳态正压大气边界层进行了模拟。通过少量网格预前模拟、主模拟和近地面物理量调整三个步骤,对风场的自保持实现方法进行了探讨。研究表明,通过调整k-ε模型基本参数,可以取得与实测较一致的模拟结果。少量网格预前模拟得到的风场应用于主模拟中,各物理量均可以在流域中得到较好的保持。通过ANSYS Fluent中的FixedValues操作进行近地面物理量调整,可以取得更加理想的自保持结果。

关键词: 计算流体动力学, 大气边界层, 自保持, k-ε模型, 科氏力

Abstract: Based on the fundamental equations, the incompressible, neutrally stratified, horizontally homogeneous, steady, and barotropic atmospheric boundary layer was simulated by the modifying parameters of a k-ε model. Through the three steps of pre-simulation, main simulation, and near-ground physical quantities adjustment, the method of self-sustaining for a wind field was discussed. The studies show that: by the modifying parameters of a k-ε model, the consistent simulation results with the measurement data are obtained. The physical quantities can be self-sustained well when the wind profiles obtained from the pre-simulations with a few meshes are applied to main simulations. More ideal self-sustained results can be achieved by the near-ground physical quantities adjustment with the Fixed Values operation in ANSYS Fluent.

Key words: computational fluid dynamics, atmospheric boundary layer, self-sustaining, k-ε model, Coriolis force

中图分类号: 

  • O357.5+2
[1] Blocken B, Gualtieri C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics[J]. Environmental Modelling and Software, 2012, 33(1):1-22.
[2] Blocken B, Stathopoulos T, Carmeliet J. CFD simulation of the atmospheric boundary layer:wall function problems[J]. Atmospheric Environment, 2007, 41(26):238-252.
[3] Richards P J, Norris S E. Appropriate boundary conditions for computational wind engineering models revisited[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4):257-266.
[4] Zheng D, Zhang A, Gu M. Improvement of inflow boundary condition in large eddy simulation of flow around tall building[J]. Engineering Applications of Computational Fluid Mechanics, 2012, 6(4):633-647.
[5] 唐煜, 郑史雄, 赵博文, 等. 平衡大气边界层自保持问题的研究[J]. 工程力学, 2014, 31(10):129-135. Tang Yu, Zheng Shixiong, Zhao Bowen, et al. Numerical investigation on the self-sustaining of equilibrium atmosphere boundary layers[J]. Engineering Mechanics, 2014, 31(10):129-135. (in Chinese)
[6] 罗凯文, 杨易, 谢壮宁. 基于k-ε模型模拟平衡态大气边界层的比较研究[J]. 工程力学, 2018, 35(2):21-29. Luo Kaiwen, Yang Yi, Xie Zhuangning. A comparative study on the simulation of neutral atmospheric boundary layer based on the k-ε turbulence model[J]. Engineering Mechanics, 2018, 35(2):21-29. (in Chinese)
[7] Richards P J, Hoxey R P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46&47:145-153.
[8] Franke J. Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment[C]//Organizing Committee of the 4th International Symposium on Computational Wind Engineering. Proceedings of the 4th International Symposium on Computational Wind Engineering. Yokohama:Organizing Committee of the 4th International Symposium on Computational Wind Engineering, 2006:529-532.
[9] Tominaga Y, Mochida A, Yoshie R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10):1749-1761.
[10] Hargreaves D M, Wright N G. On the use of the k-ε model in commercial CFD software to model the neutral atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(5):355-369.
[11] 张建, 杨庆山. 基于标准k-ε模型的平衡大气边界层模拟[J]. 空气动力学学报, 2009, 27(6):729-735. Zhang Jian, Yang Qingshan. Application of standard k-ε model to simulate the equilibrium ABL[J]. Acta Aerodynamica Sinica, 2009, 27(6):729-735. (in Chinese)
[12] 方平治, 顾明, 谈建国, 等. 数值模拟大气边界层中解决壁面函数问题方法研究[J]. 振动与冲击, 2015, 34(2):85-90. Fang Pingzhi, Gu Ming, Tan Jianguo, et al. Method to solve the wall function problem in simulation of atmospheric boundary layer[J]. Journal of Vibration and Shock, 2015, 34(2):85-90. (in Chinese)
[13] Yang Y, Gu M, Chen S, et al. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(2):88-95.
[14] Yang W, Quan Y, Jin X, et al. Influences of equilibrium atmosphere boundary layer and turbulence parameter on wind loads of low-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10):2080-2092.
[15] Parente A, Gorlé C, Van Beeck J, et al. Improved k-ε model and wall function formulation for the RANS simulation of ABL flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4):267-278.
[16] Parente A, Gorlé C, van Beeck J, et al. A comprehensive modelling approach for the neutral atmospheric boundary layer:consistent inflow conditions, wall function and turbulence model[J]. Boundary-Layer Meteorology, 2011, 140(3):411-428.
[17] O'Sullivan J P, Archer R A, Flay R G J. Consistent boundary conditions for flows within the atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(1):65-77.
[18] 谢霁明. 超高层建筑抗风设计的现状与展望[C]//中国土木工程学会, 中国空气动力学会. 第十五届全国结构风工程学术会议论文集. 北京:人民交通出版社, 2011:69-77. Xie Jiming. The status and trends of wind-resistant design for supertall buildings[C]//China Civil Engineering Society, Chinese Aerodynamics Research Society. Proceedings of the 15th National Wind Engineering Conference of China. Beijing:China Communications Press, 2011:69-77. (in Chinese)
[19] 吴迪. 千米级超高层建筑气动性能研究[D]. 北京:北京交通大学, 2015. Wu Di. Aerodynamic study of 1000 m-high super tall building[D]. Beijing:Beijing Jiaotong University, 2015. (in Chinese)
[20] 张艳辉. 超高层建筑结构旋转风荷载效应研究[D]. 哈尔滨:哈尔滨工业大学, 2013. Zhang Yanhui. Study on wind veering effects on super-tall buildings[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
[21] 王鑫. 用于大涡模拟的入口湍流生成方法研究及其应用[D]. 上海:同济大学, 2017. Wang Xin. Research and application of random flow generation technique for large eddy simulation[D]. Shanghai:Tongji University, 2017. (in Chinese)
[22] Franke J, Hellsten A, Schlünzen H, et al. Best practice guideline for the CFD simulation of flows in the urban environment[M]. Brussels:COST Office, 2007:1-52.
[23] Koblitz T, Bechmann A, Sogachev A, et al. Computational fluid dynamics model of stratified atmospheric boundary-layer flow[J]. Wind Energy, 2015, 18(1):75-89.
[24] Wright N G, Easom G J. Comparison of several computational turbulence models with full-scale measurements of flow around a building[J]. Wind and Structures, 1999, 2(4):305-323.
[1] 罗凯文, 杨易, 谢壮宁. 基于k-ε模型模拟平衡态大气边界层的比较研究[J]. 工程力学, 2018, 35(2): 21-29.
[2] 张志田, 张显雄, 陈政清. 桥梁气动力CFD模拟中湍流模型的应用现状[J]. 工程力学, 2016, 33(6): 1-8.
[3] 李启, 杨庆山, 张建. 解不可压流动的高时间精度投影法研究[J]. 工程力学, 2014, 31(11): 79-85.
[4] 唐煜, 郑史雄, 赵博文, 李明水. 平衡大气边界层自保持问题的研究[J]. 工程力学, 2014, 31(10): 129-135.
[5] 李利孝, 肖仪清, 宋丽莉, 秦鹏. 基于风观测塔和风廓线雷达实测的强台风黑格比风剖面研究[J]. 工程力学, 2012, 29(9): 284-293.
[6] 颜卫亨;邰家醉;张茂功. 野营折叠网壳结构表面定常风场的数值模拟研究[J]. 工程力学, 2012, 29(4): 224-230.
[7] 李 启 杨庆山 朱伟亮. 湍流入口条件下建筑非定常风场的大涡模拟拟[J]. 工程力学, 2012, 29(12): 274-280.
[8] 王文全;张立翔;闫 妍;郭亚昆. 方柱绕流诱发的弹性薄板流固耦合特性研究[J]. 工程力学, 2011, 28(3): 17-022.
[9] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210-217,.
[10] 王和慧;于 莉;周金水;陈一凡;谢可迪;王守波;施非非. 希罗装置复杂通道的CFD仿真和FE分析设计[J]. 工程力学, 2010, 27(5): 231-239.
[11] 金红杰;吴恒安;曹 刚;刘 合;王秀喜. 螺杆泵系统漏失和磨损机理研究[J]. 工程力学, 2010, 27(4): 179-184.
[12] 龙丽平;赵丽滨;刘立东. 列车致声屏障结构的空气脉动力研究[J]. 工程力学, 2010, 27(03): 246-250.
[13] 周绪红;聂少锋;周天华;龚 焮. 低层双坡屋面建筑三维定常风场的数值模拟[J]. 工程力学, 2010, 27(03): 19-029.
[14] 汪丛军;黄本才;张 昕;王国俭;周 健. 人工粘性方法用于复杂大跨屋面的平均风压模拟[J]. 工程力学, 2008, 25(5): 0-101.
[15] 王 彬;杨庆山. 弱耦合算法的实现及其应用[J]. 工程力学, 2008, 25(12): 48-052,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日