工程力学 ›› 2019, Vol. 36 ›› Issue (2): 53-65,86.doi: 10.6052/j.issn.1000-4750.2017.11.0898

• 土木工程学科 • 上一篇    下一篇

基于GPU并行计算的地下结构非线性动力分析软件平台开发

曹胜涛, 路德春, 杜修力, 赵密, 程星磊   

  1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124
  • 收稿日期:2017-11-27 修回日期:2018-11-08 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 杜修力(1962-),男,四川广安人,教授,博士,博导,从事地震工程领域的研究(E-mail:duxiuli@bjut.edu.cn). E-mail:duxiuli@bjut.edu.cn
  • 作者简介:曹胜涛(1985-),男,河北邢台人,工程师,博士,从事工程结构抗震领域的研究(E-mail:1159563218@qq.com);路德春(1977-),男,黑龙江兰西人,教授,博士,博导,从事土动力学与岩土地震工程领域的研究(E-mail:dechun@bjut.edu.cn);赵密(1980-),男,吉林公主岭人,教授,博士,博导,从事重大工程抗震领域的研究(E-mail:zhaomi@bjut.edu.cn);程星磊(1987-),男,山西长治人,讲师,博士,从事海洋土动力学领域的研究(E-mail:chengxinglei110@163.com).
  • 基金资助:
    国家自然科学基金项目(51421005,51522802,51778026)

DEVELOPMENT ON SOFTWARE PLATFORM FOR NONLINEAR DYNAMIC ANALYSIS OF UNDERGROUND STRUCTURE BASED ON GPU PARALLEL COMPUTING

CAO Sheng-tao, LU De-chun, DU Xiu-li, ZHAO Mi, CHENG Xing-lei   

  1. Key Lab of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2017-11-27 Revised:2018-11-08 Online:2019-02-22 Published:2019-02-22

摘要: 为解决地下结构隐式非线性动力分析收敛性差和计算效率低的技术瓶颈,该文建立了基于GPU并行计算的地下结构显式动力分析软件平台。在此平台中提出并实现了一种混凝土弥散开裂模型;给出并实现了一种钢筋纤维与实体单元的耦合方法;基于等参元思想,提出了人工边界节点的单元从属面积的计算方法;为实现节点不协调情况下的土与结构相互作用分析,开发实现了一种实体单元间的两节点接触单元。利用该文开发的软件对日本大开地铁站进行了重力场分析、线性和非线性动力分析。将重力场和线性动力分析结果与ABAQUS分析结果进行了对比,结果表明该文软件计算结果与ABAQUS计算结果一致,且计算效率约为ABAQUS计算效率的5.68倍,验证了软件各模块的正确性和效率。另外,通过将非线性计算结果与灾害调查结果进行对比分析,验证了软件非线性分析的稳定性和合理性。

关键词: 地下结构, 非线性动力分析, GPU并行计算, 本构模型, 软件平台

Abstract: The implicit nonlinear dynamic analysis of underground structures is of poor convergence and low computational efficiency. Based on GPU parallel computing, a software platform for the explicit dynamic analysis of underground structures was established, which can solve the technical bottleneck of the implicit method. In this platform, a smeared crack model for concrete was proposed and implemented. A coupling method for rebar fibers and solid elements was developed and implemented. Based on the isoparametric element idea, a method for calculating the element area of artificial boundary nodes was proposed. A two-node interface element for solid elements was proposed to perform the interaction analysis between soil and structure with uncoordinated nodes. The gravity field analysis, linear and nonlinear dynamic analysis of Daikai subway station in Japan were performed by the software. The results of gravity field analysis and linear dynamic analysis were compared with the results of ABAQUS. The results of the software were in an agreement with the results of ABAQUS, and the computational efficiency was about 5.68 times the efficiency of ABAQUS. Thusly, the accuracy and efficiency of the software modules were verified. Besides, the stability and rationality of the software nonlinear analysis were verified by comparing the results of nonlinear analysis with the disaster investigation.

Key words: underground structure, nonlinear dynamic analysis, GPU parallel computing, constitutive model, software platform

中图分类号: 

  • TU311.3
[1] Ma C, Lu D C, Du X L, et al. Effect of buried depth on seismic response of rectangular underground structures considering the influence of ground loss[J]. Soil Dynamics & Earthquake Engineering, 2018, 106:278-297.
[2] 路德春, 罗磊, 王欣, 等. 土与结构接触面土体软/硬化本构模型及数值实现[J]. 工程力学, 2017, 34(7):41-50. Lu Dechun, Luo Lei, Wang Xin, et al. Softening/hardening constitutive model for soil-structure interface and numerical implementation[J]. Engineering Mechanics, 2017, 34(7):41-50. (in Chinese)
[3] 杜修力, 李洋, 赵密, 等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5):52-59. Du Xiuli, Li Yang, Zhao Mi, et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics, 2017, 34(5):52-59. (in Chinese)
[4] Nakamura S, Yoshida N, Iwatate T. Damage to Daikai subway station during the 1995 Hyogoken-Nanbu earthquake and its investigation[J]. Japan Society of Civil Engineers, Committee of Earthquake Engineering, 1996:287-295.
[5] An X, Shawky A A, Maekawa K. The collapse mechanism of a subway station during the Great Hanshin Earthquake[J]. Cement and Concrete Composites, 1997, 19(3):241-257.
[6] Maekawa K, Shawky A. Computational approach to path-dependent nonlinear RC/soil interactions[J]. Concrete Library International, 1996, 30(532):197-207.
[7] 曹炳政, 罗奇峰, 马硕, 等. 神户大开地铁车站的地震反应分析[J]. 地震工程与工程振动, 2002, 22(4):102-107. Cao Bingzheng, Luo Qifeng, Ma Shuo, et al. Seismic response analysis of Daikai subway station in Hyogoken-Nanbu earthquake[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(4):102-107. (in Chinese)
[8] Liu J B, Liu X Q. Pushover analysis of Daikai subway station during the Osaka-Kobe earthquake in 1995[C]. Proceedings of the 14th World Conference on Earthquake Engineering. Beijing China, 2008:No.14-0099.
[9] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1):245-250. Zhuang Haiyang, Cheng Shaoge, Chen Guoxing. Numerical simulation and analysis of earthquake damages of Daikai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1):245-250. (in Chinese)
[10] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1):53-62. Du Xiuli, Ma Chao, Lu Dechun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1):53-62. (in Chinese)
[11] Flanagan D, Belytschko T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J]. International Journal for Numerical Methods in Engineering, 1981, 17(5):679-706.
[12] Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils[J]. Soil Mechanics & Foundation Division Journal, 1970, 96(5):1629-1653.
[13] Simo J C, Hughes T J R. Computational inelasticity[M]. USA:Springer, 2008:91-92.
[14] Rots J G, Blaauwendraad J. Crack models for concrete, discrete or smeared? fixed, multi-directional or rotating?[J]. Heron, 1989, 34(1):1-59.
[15] Vecchio F J, Collins M P. The modified compressionfield theory for reinforced concrete elements subjected to shear[J]. ACI Journal, 1986, 83(2):219-231.
[16] 杜修力, 王国盛, 路德春. 混凝土材料非线性多轴动态强度准则[J]. 中国科学:技术科学, 2014, 44(12):1319-1332. Du Xiuli, Wang Guosheng, Lu Dechun. Nonlinear multiaxial dynamic strength criterion for concrete material[J]. Scientia Sinica Technologica, 2014, 44(12):1319-1332. (in Chinese)
[17] 李杰, 吴建营. 混凝土弹塑性损伤本构模型研究I:基本公式[J]. 土木工程学报, 2006, 38(9):14-20. Li Jie, Wu Jianying. Elastoplastic damage constitutive model for concrete based on damage energy release rates, part I:basic formulations[J]. China Civil Engineering Journal, 2006, 38(9):14-20. (in Chinese)
[18] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3):299-326.
[19] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[20] 陈惠发, 余天庆. 混凝土和土的本构方程[M]. 北京:中国建筑工业出版社, 2004:20-22. Chen Huifa, Yu Tianqing. Constitutive equations for materials of concrete and soil[M]. Beijing:China Architecture & Building Press. 2004:20-22. (in Chinese)
[21] 过镇海. 混凝土的强度和变形:试验基础和本构关系[M]. 北京:清华大学出版社, 1997:13-15. Guo Zhenhai. Strength and deformation of concrete:experimental basis and constitutive relation[M]. Beijing:Tsinghua University Press,1997:13-15. (in Chinese)
[22] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2011:209-211. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2011:209-211. (in Chinese)
[23] Bažant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Materials and Structures, 1983, 16(3):155-177.
[24] Suidan M, Schnobrich W C. Finite element analysis of reinforced concrete[J]. Journal of the Structural Division, 1973, 99(10):2109-2122.
[25] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京:中国水利水电出版社, 2013:146-152. Fei Kang, Zhang Jianwei. Application of ABAQUS in geotechnical engineering[M]. Beijing:China Water Power Press, 2013:146-152. (in Chinese)
[26] Belytschko T, Bindeman L P. Assumed strain stabilization of the eight node hexahedral element[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 105(2):225-260.
[27] 江见鲸. 钢筋混凝土结构非线性有限元分析[M]. 西安:陕西科学技术出版社, 1994:91-116. Jiang Jianjing. Nonlinear finite element analysis of reinforced concrete structures[M]. Xi'an:Shaanxi Science and Technology Press, 1994:91-116. (in Chinese)
[1] 白卫峰, 刘霖艾, 管俊峰, 姚贤华. 基于统计损伤理论的硫酸盐侵蚀混凝土本构模型研究[J]. 工程力学, 2019, 36(2): 66-77.
[2] 谭辉, 刘晶波, 王东洋, 宝鑫, 李述涛. 地下结构地震反应分析中人工边界条件和地震波动输入方法对比研究[J]. 工程力学, 2018, 35(S1): 212-216,222.
[3] 余志武, 单智. 混凝土随机损伤本构模型研究新进展[J]. 工程力学, 2018, 35(8): 1-8,13.
[4] 王宇航, 余洁, 吴强. 复杂循环路径下钢材弹塑性屈曲行为研究[J]. 工程力学, 2018, 35(7): 24-38.
[5] 曹胜涛, 李志山, 刘付钧. 一种非比例振型阻尼模型及在大规模非线性分析中的应用[J]. 工程力学, 2018, 35(11): 162-171.
[6] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9): 1-12.
[7] 闫维明, 谢志强, 宋林琳, 何浩祥. 冷弯薄壁型钢锁铆连接力学性能及其本构模型研究[J]. 工程力学, 2017, 34(8): 133-143.
[8] 路德春, 罗磊, 王欣, 杜修力. 土与结构接触面土体软/硬化本构模型及数值实现[J]. 工程力学, 2017, 34(7): 41-50.
[9] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2): 50-59.
[10] 王萌, 钱凤霞, 杨维国, 杨璐. 低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J]. 工程力学, 2017, 34(2): 60-68.
[11] 池寅, 黄乐, 余敏. 基于ABAQUS的钢-聚丙烯混杂纤维混凝土损伤塑性本构模型取值方法研究[J]. 工程力学, 2017, 34(12): 131-142.
[12] 曹胜涛, 李志山. 约束混凝土单轴弹塑性损伤本构模型[J]. 工程力学, 2017, 34(11): 116-125.
[13] 南波, 武岳, 孙浩田. 缠绕型CFRP圆管轴压力学性能[J]. 工程力学, 2017, 34(1): 92-100.
[14] 王沿朝, 陈清军. 地震波反演与地下结构的动力响应分析[J]. 工程力学, 2016, 33(增刊): 227-233.
[15] 高照宇, 陈清军. 地震作用下地下商业街结构动力反应的影响因素分析[J]. 工程力学, 2016, 33(增刊): 85-89,149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日