工程力学 ›› 2019, Vol. 36 ›› Issue (2): 195-204.doi: 10.6052/j.issn.1000-4750.2017.11.0895

• 土木工程学科 • 上一篇    下一篇

蜂窝夹层铝建筑模板的几何优化与试验研究

肖潭1, 胡森1, 吴伟1, 熊慧芳2   

  1. 1. 广东石油化工学院力学教学与实验中心, 广东, 茂名 525000;
    2. 广东石油化工学院计算机与电子信息学院, 广东, 茂名 525000
  • 收稿日期:2017-11-23 修回日期:2018-01-30 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 肖潭(1965-),男,江西人,教授,博士,博导,主要从事板壳非线性问题研究(E-mail:xiaotan@gdupt.edu.cn). E-mail:xiaotan@gdupt.edu.cn
  • 作者简介:胡森(1993-),男,河南人,本科,主要从事建筑工程施工管理工作研究(E-mail:940822839@qq.com);吴伟(1987-),男,河南人,硕士,主要从事结构力学性能分析与测试工作研究(E-mail:407512155@qq.com);熊慧芳(1967-),女,湖南人,工程师,硕士,主要从事数字图像位移分析与应用研究(E-mail:hfxiong@gdupt.edu.cn).
  • 基金资助:
    茂名市科技计划项目(2016001);广东大学生科技创新培育专项资金项目(A-027);广东石油化工学院人才引进项目(513040);创新强校重大研究计划类资助项目(650460)

GEOMETRICAL OPTIMIZATION AND EXPERIMENTAL STUDY OF ALUMINUM HONEYCOMB SANDWICH CONSTRUCTION FORMWORKS

XIAO Tan1, HU Sen1, WU Wei1, XIONG Hui-fang2   

  1. 1. Center for Mechanical Teaching and Testing, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China;
    2. School of Computer and Electronic Information, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
  • Received:2017-11-23 Revised:2018-01-30 Online:2019-02-22 Published:2019-02-22

摘要: 建筑模板技术的创新对混凝土工程具有重要意义。该文对铝建筑模板采用蜂窝夹层结构的可行性进行计算分析与实验研究。首先根据Gibson理论计算蜂窝夹心结构的等效弹性参数,然后参考Reissner模型计算蜂窝夹层模板在均布荷载作用下的应力与变形,再按照铝建筑模板行业标准要求控制模板的变形条件和约束条件,对该模板蜂窝夹层结构的几何参数进行了优化。最后进行蜂窝夹层铝模板的弯曲试验,使用数字摄影测量系统获得了铝模板试件在不同载荷条件下的三维全场变形数据,试验结果与理论计算结果吻合较好。研究结果表明,采用蜂窝夹层结构可将铝建筑模板的质量降低60%以上。

关键词: 蜂窝夹层结构, 建筑模板, 几何优化, 弯曲试验, 变形测量

Abstract: The technique innovation of construction formwork is of great importance in concrete engineering. The possibility of applying honeycomb sandwich structures to aluminum construction formwork was analyzed by computational and test methods. The equivalent elastic parameters of a honeycomb core structure were calculated based on Gibson’s theory, and then the stresses and deformation of the honeycomb sandwich construction formwork subjected to a uniformly distributed load were computed by using Reissner’s model. The geometrical parameters of the honeycomb sandwich structure were optimized under the deformation and constraint conditions according to the industry standard of aluminum construction formwork. Finally, the bending tests of the honeycomb sandwich aluminum construction formworks were conducted in which full-field three-dimensional deformation data were acquired by using a digital photogrammetric system. The test results are in a good agreement with that of the theoretical computation. It shows that the mass of the aluminum formwork can be reduced at least 60% after the application of honeycomb sandwich structures.

Key words: honeycomb sandwich structure, construction formwork, geometrical optimization, bending test, deformation measurement

中图分类号: 

  • TU64
[1] 叶海军, 史鸣军. 建筑模板的发展历程及前景[J]. 山西建筑, 2007, 33(31):158-159. Ye Haijun Shi Mingjun. Development process and foreground of the architectural template[J]. Shanxi Architecture, 2007, 33(31):158-159. (in Chinese)
[2] 苑炳南, 许路明. 无背楞全钢大模板的研究与应用[J]. 建筑技术, 1999, 30(8):564. Yuan Bingnan, Xu Luming. Research and application of whole steel panel form without back ridge[J]. Architecture Technology, 1999, 30(8):564. (in Chinese)
[3] 石亚明. 无背楞拼装式全钢大模板技术及应用[J]. 施工技术, 2009, 38(4):79-81. Shi Yaming. Technology and application of all steel large formwork with no dorsal bar assembly[J]. Construction Technology, 2009, 38(4):79-81. (in Chinese)
[4] 杨万喆, 陈学岩. 铝合金模板在建筑工程中的应用[J]. 陕西建筑, 2013(10):23-25. Yang Wanzhe, Chen Xueyan. Application of aluminum formwork in construction engineering[J]. Shanxi Architecture, 2013(10):23-25. (in Chinese)
[5] 孔令标. 论铝合金组合模板系统施工的优越性与局限性[J]. 广东建材, 2013(3):64-67. Kong Lingbiao. Advantages and limitations of assembled aluminum formwork system in construction[J]. Guangdong Building Materials, 2013(3):64-67. (in Chinese)
[6] 程文礼, 袁超, 邱启艳, 等. 航空用蜂窝夹层结构及制造工艺[J]. 航空制造技术, 2015(7):94-98. Cheng Wenli, Yuan Chao, Qiu Qiyan, et al. Honeycomb sandwich structure and manufacturing process in aviation industry[J]. Aeronautical Manufacturing Technology. 2015(7):94-98. (in Chinese)
[7] Reissner E. On bending of elastic plates[J]. Quarterly of Applied Mathematics, 1947, 5(1):55-68.
[8] Gibson L J, Ashby M F. Cellular solids, structure and properties[M]. Oxford:Pergamon Press, 1988.
[9] 赵金森. 铝蜂窝夹层板的力学性能等效模型研究[D]. 南京:南京航空航天大学, 2006. Zhao Jinsen. Research on equivalent models of the mechanical function for aluminum honeycomb sandwich panel[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)
[10] 王栋. 双层金属蜂窝夹层结构的设计与力学分析[D]. 哈尔滨:哈尔滨工业大学, 2007. Wang Dong. Design and mechanical analysis of double-layer metallic honeycomb sandwich structure[D]. Harbin:Harbin Institute of Technology, 2007. (in Chinese)
[11] Catapano A, Montemurro M. A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I:Homogenization of core properties[J]. Composite Structures, 2014, 118:664-676.
[12] Catapano A, Montemurro M. A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part Ⅱ:The optimisation strategy[J]. Composite Structures, 2014, 118:677-690.
[13] 洪俊青, 刘伟庆, 方海. 格构腹板增强型泡沫复合材料夹层结构腹板平面内屈曲分析[J]. 工程力学, 2015, 32(8):66-73. Hong Junqing, Liu Weiqing, Fang Hai. Web buckling behaviors under in-plane compression for web lattice enhanced foam-sandwich structures[J]. Engineering Mechanics, 2015, 32(8):66-73. (in Chinese)
[14] 陈春强, 陈前. 电流变夹层板的拓扑优化研究[J]. 工程力学, 2016, 33(增刊):290-295. Chen Chunqiang, Chen Qian. Topology optimization of semi-active vibration control for an electrorheological sandwich plate[J]. Engineering Mechanics, 2016, 33(Suppl):290-295. (in Chinese)
[15] 韩丽婷, 刘伟庆. 复合材料夹层结构自插式平接节点抗弯性能试验研究[J]. 工程力学, 2015, 32(11):115-122. Han Liting, Liu Weiqing. Experimental studies on bending performance of the insert adherence joints for composite sandwich structure[J]. Engineering Mechanics, 2015, 32(11):115-122. (in Chinese)
[16] Sun G Y, Huo X T, Chen D D, et al. Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression[J]. Materials and Design, 2017, 133:154-168.
[17] DBJ-15-96-2013, 铝合金模板技术规范[S]. 北京:中国城市出版社, 2013. DBJ-15-96-2013, Technical code of aluminum alloy formwork[S]. Beijing:China City Press, 2013. (in Chinese)
[18] JGJ-386-2016, 组合铝合金模板工程技术规程[S]. 北京:中国建筑工业出版社, 2016. JGJ-386-2016, Technical specification for combined aluminum alloy formwork engineering[S]. Beijing:China Construction Industry Press, 2016. (in Chinese)
[19] 张德海, 梁晋, 唐正宗, 等. 基于近景摄影测量和三维光学测量的大幅面测量新方法[J]. 中国机械工程, 2009, 20(7):817-822. Zhang Dehai, Liang Jin, Tang Zhengzong, et al. New measuring method of large size measurement based on close range photogrammetry and 3D optical measurement[J]. China Mechanical Engineering, 2009, 20(7):817-822. (in Chinese)
[20] 肖振中, 梁晋, 唐正宗, 等. 汽车大型模具实型的三维摄影测量检测[J]. 塑性工程学报, 2009, 16(2):150-155. Xiao Zhenzhong, Liang Jin, Tang Zhengzong, et al. 3D photogrammetry measurement and inspect technology for foam model of auto die[J]. Journal of Plasticity Engineering, 2009, 16(2):150-155. (in Chinese)
[21] 成广民, 丁锁柱. 复合材料蜂窝夹层结构计算的一般方法和进展[J]. 玻璃钢/复合材料, 1996(2):11-13. Cheng Guangmin, Ding Suozhu. Common method and development for composite honeycomb sandwich structure calculation[J]. Fiber Reinforced Plastic/Composites, 1996(2):11-13. (in Chinese)
[22] Davies J M. Lightweight sandwich construction[M]. London:Wiley-Blackwell, 2001:193-255.
[23] Allen H G. Analysis and design of structural sandwich panels[M]. London:Pergamon Press, 1969:8-18.
[24] 沃西源, 夏英伟, 涂彬. 蜂窝夹层结构复合材料特性及破坏模式分析[J]. 航天返回与遥感, 2005, 26(4):45-49. Wo Xiyuan, Xia Yingwei, Tu Bin. The property of honeycomb sandwich structure and the destroy mode analyzing[J]. Spacecraft Recovery and Remote Sensing, 2005, 26(4):45-49. (in Chinese)
[25] 周祝林. 蜂窝夹层结构的最优参数选择[J]. 应用数学和力学, 1985, 6(6):541-549. Zhou Zhulin. Selection of the optimum parameters for sandwich construction with honeycomb core[J]. Applied Mathematics and Mechanics, 1985, 6(6):541-549(in Chinese)
[26] 王颖坚. 蜂窝结构在面内剪切作用下的变形模式[J]. 北京大学学报, 1991, 27(3):301-306. Wang Yingjian. Deformation models of honeycomb cell under in-plane shear[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1991, 27(3):301-306. (in Chinese)
[27] Triantafillou T C, Gibson L J. Failure mode maps for foam core sandwich beams[J]. Materials Science and Engineering, 1987, 95:37-53.
[28] 黎文方. 新型铝合金模板试验测试[J]. 施工技术, 2013, 42(增刊1):279-280. Li Wenfang. Test to new style alloy aluminum formwork[J]. Construction Technology, 2013, 42(Suppl1):279-280. (in Chinese)
[1] 穆富江, 王激扬, 李伟平, 徐世烺. 钢丝网-喷射UHTCC薄板抗弯性能试验研究[J]. 工程力学, 2018, 35(S1): 338-343.
[2] 王激扬, 沈玲华, 徐世烺. 钢纤维TRC薄板的常温及高温后弯曲力学性能[J]. 工程力学, 2016, 33(增刊): 6-10,17.
[3] 金竹雨, 张晓晶, 汪海. 缝线增强层合板混合模式弯曲试验的数值模拟[J]. 工程力学, 2016, 33(2): 232-241,256.
[4] 徐云研, 程小全, 张纪奎, 郦正能. 复合材料蜂窝夹层结构T型接头拉伸性能研究[J]. 工程力学, 2015, 32(7): 243-248.
[5] 陈滔,李庆斌,管俊峰,卿龙邦. 霍普金森拉杆装置螺纹过渡段变形测量修正[J]. 工程力学, 2013, 30(7): 276-281,293.
[6] 张秀芳;徐世烺. 钢筋增强超高韧性水泥基复合材料梁的弯曲承载力及延性分析[J]. 工程力学, 2009, 26(12): 133-141,.
[7] 徐千军;余寿文. 双层及多层薄膜的端部应力分析[J]. 工程力学, 1997, 14(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日