工程力学 ›› 2019, Vol. 36 ›› Issue (2): 249-256.doi: 10.6052/j.issn.1000-4750.2017.11.0888

• 其他工程学科 • 上一篇    

纸夹芯和泡沫复合层状结构的静态缓冲吸能特性研究

潘丹, 郭彦峰, 付云岗, 王行宁, 唐唯高   

  1. 西安理工大学印刷包装与数字媒体学院, 陕西, 西安 710048
  • 收稿日期:2017-11-22 修回日期:2018-07-31 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 郭彦峰(1970-),男,陕西人,教授,博士,主要从事缓冲包装动力学、新型缓冲吸能结构与性能方面的研究(E-mail:guoyf@xaut.edu.cn). E-mail:guoyf@xaut.edu.cn
  • 作者简介:潘丹(1991-),女,陕西人,硕士生,主要从事新型缓冲吸能结构与性能方面的研究(E-mail:pand66@163.com);付云岗(1981-),男,山西人,讲师,博士生,主要从事夹层结构材料的缓冲包装机理及应用的研究(E-mail:fygpack@xaut.edu.cn);王行宁(1994-),女,甘肃人,硕士生,主要从事新型缓冲吸能结构与性能方面的研究(E-mail:wangxingning_1993@163.com);唐唯高(1993-),男,陕西人,硕士生,主要从事新型缓冲吸能结构与性能方面的研究(E-mail:tangweigao0424@163.com).
  • 基金资助:
    国家自然科学基金项目(51345008);西安市科技计划项目(2017080CG/RC043(XALG024));陕西省重点研发计划一般项目(2018GY-191)

STATIC CUSHIONING AND ENERGY ABSORPTION OF COMPOSITE LAYERED STRUCTURES WITH PAPER SANDWICH CORE AND PLASTIC FOAM

PAN Dan, GUO Yan-feng, FU Yun-gang, WANG Xing-ning, TANG Wei-gao   

  1. Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
  • Received:2017-11-22 Revised:2018-07-31 Online:2019-02-22 Published:2019-02-22

摘要: 针对由发泡聚乙烯(EPE)、瓦楞纸板、蜂窝纸板组成的复合层状结构的包装防护作用,通过实验对比分析了这类结构的横向静态压缩变形特征和缓冲吸能特性。结果表明,这类结构在压缩初始阶段和最后阶段主要表现为EPE的力学性能,而在中间阶段为瓦楞纸板、蜂窝纸板的力学性能。复合层状结构的弹性模量、总吸能、行程利用率均高于EPE,而单位体积变形能则由于试样厚度增加幅值不同,并未表现出与总吸能一致的变化规律。比吸能随着压缩应变增大而增加,几乎不受压缩速度的影响,其中EPE与蜂窝纸板复合层状结构的比吸能均大于EPE与瓦楞纸板复合结构。在应力水平较小时,EPE与瓦楞纸板复合层状结构的能量吸收效率大,然而在应力水平较大时,EPE与蜂窝纸板复合的能量吸收效率大。

关键词: 纸夹芯, 发泡聚乙烯, 复合层状结构, 静态压缩, 缓冲吸能

Abstract: For the packaging protection of the composite layered structures including corrugated paperboard, honeycomb paperboard, and expandable polyethylene (EPE), the transverse static compression deformation and the cushioning energy absorption of these structures were analyzed experimentally. The results show that: these structures embody the mechanical properties of EPE in the initial and final compression stages, and reflect the mechanical properties of corrugated paperboard or honeycomb paperboard in the middle stage. The elastic modulus, total energy absorption and stroke efficiency of the composite layered structures are higher than those of EPE, while the unit volume deformation energy does not show the identical change rule as the total energy absorption because of the different amplitude of specimen thickness. The specific energy absorption rises with the increase of compression strain, and not affected by the compression speed. The specific energy absorption of composite layered structures with EPE and honeycomb paperboard is greater than those of EPE and corrugated paperboard. The energy absorption efficiency of the EPE and of the corrugated paperboard composite layered structures is larger at the low stress level, yet that of the EPE and of the honeycomb paperboard composite layered structures is greater at the high stress level.

Key words: paper sandwich core, expandable polyethylene, composite layered structure, static compression, cushioning and energy absorption

中图分类号: 

  • TB484.1
[1] 敬霖, 王志华, 赵隆茂. 多孔金属及其夹芯结构力学性能的研究进展[J]. 力学与实践, 2015, 37(1):1-24. Jing Lin, Wang Zhihua, Zhao Longmao. Advances in studies of the mechanical performance of cellular metals and related sandwich structures[J]. Mechanics in Engineering, 2015, 37(1):1-24. (in Chinese)
[2] 卢富德, 刘雄建, 高德. 多胞缓冲材料本构模型与应用进展[J]. 浙江大学学报(工学版), 2014, 48(7):1136-1144. Lu Fude, Liu Xiongjian, Gao De. Review of constitutive model and its application of cellular cushioning material[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(7):1136-1144. (in Chinese)
[3] Mills N J, Masso-Moreu Y. Finite element analysis (FEA) applied to polyethylene foam cushions in package drop tests[J]. Packaging Technology and Science, 2005, 18(1):29-38.
[4] Lu T J, Chen C, Zhu G. Compressive behavior of corrugated board panels[J]. Journal of Composite Materials, 2001, 35(23):2098-2126.
[5] Rejab M R M, Cantwell W J. The mechanical behaviour of corrugated-core sandwich panels[J]. Composites Part B:Engineering, 2013, 47:267-277.
[6] 付云岗, 郭彦峰, 王忠民. 瓦楞纸板的压缩变形及吸能特性研究[J]. 中国造纸学报, 2015, 30(3):31-35. Fu Yungang, Guo Yanfeng, Wang Zhongmin. Study on compression deformation and energy absorption properties of corrugated paperboard[J]. Transactions of China Pulp and Paper, 2015, 30(3):31-35. (in Chinese)
[7] Sek M, Rouillard V, Tarash H, et al. Enhancement of cushioning performance with paperboard crumple inserts[J]. Packaging Technology and Science, 2005, 18(5):273-278.
[8] Rouillard V, Sek M. Behaviour of multi-layered paperboard cushioning systems under impact loads[J]. Strain, 2007, 43(4):345-347.
[9] Wang D M. Cushioning properties of multi-layer corrugated sandwich structures[J]. Journal of Sandwich Structures and Materials, 2009, 11(1):57-66.
[10] 王冬梅, 柏子游, 龚户祥, 等. 瓦楞夹层结构动态力学性能评估[J]. 振动与冲击, 2014, 33(3):94-97. Wang Dongmei, Bai Ziyou, Gong Huxiang, et al. Evaluation of dynamic mechanical properties of corrugated sandwich structures[J]. Journal of Vibration and Shock, 2014, 33(3):94-97. (in Chinese)
[11] Guo Y F, Xu W C, Fu Y G, et al. Dynamic shock cushioning characteristics and vibration transmissibility of X-PLY corrugated paperboard[J]. Shock and Vibration, 2011, 18(4):525-535.
[12] Guo Y F, Zhang J H. Shock absorbing characteristics and vibration transmissibility of honeycomb paperboard[J]. Shock and Vibration, 200411(5/6):521-531.
[13] 冯正义, 王伊卿, 陈旭, 等. 用于多种夹层板等效的有限元分析法[J]. 应用力学学报, 2012, 29(3):291-296. Feng Zhengyi, Wang Yiqing, Chen Xu, et al. Finite element method for equivalent analysis of multiple sandwich plates[J]. Chinese Journal of Applied Mechanics, 2012, 29(3):291-296. (in Chinese)
[14] 董彦鹏, 吕振华. 基于蜂窝材料结构相似有限元模型的夹层结构抗爆炸冲击特性优化设计分析[J]. 工程力学, 2013, 30(7):248-254. Dong Yanpeng, Lü Zhenhua. Analysis and optimization of blast-resistant sandwich structure utilizing structural similar FE model of honeycomb material[J]. Engineering Mechanics, 2013, 30(7):248-254. (in Chinese)
[15] 王军, 卢立新. 蜂窝纸板面内平台应力表征[J]. 工程力学, 2012, 29(8):354-359. Wang Jun, Lu Lixin. Characterization of in-plane platean stress for honeycomb paperboard[J]. Engineering Mechanics, 2012, 29(8):354-359. (in Chinese)
[16] 王志伟, 王立军, 徐晨翼. 多次低强度冲击对蜂窝纸板缓冲性能的影响[J]. 应用力学学报, 2015, 32(3):441-445. Wang Zhiwei, Wang Lijun, Xu Chenyi. Effects of low-strength repeated impacts on cushioning performance of honeycomb paperboard[J]. Chinese Journal of Applied Mechanics, 2015, 32(3):441-445. (in Chinese)
[17] Mohamed G, Hegazy R, Mohamed M. An investigation on the mechanical behavior of expanded polystyrene (EPS) geofoam under different loading conditions[J]. International Journal of Plastics Technology, 2017, 21(1):1-7.
[18] 张勇, 谢卫红, 陈力, 等. 填充聚氨酯泡沫蜂窝纸板缓冲性能试验[J]. 解放军理工大学学报(自然科学版), 2014, 5(2):139-145. Zhang Yong, Xie Weihong, Chen Li, et al. Experimental research on static and dynamic energy absorbing capacity of honeycomb paperboard filled with polyurethane[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2014, 5(2):139-145. (in Chinese)
[19] 鄂玉萍, 张喜俊. 泡沫填充型蜂窝纸板面外压缩性能实验研究[J]. 振动与冲击, 2017, 36(20):146-150. E Yuping, Zhang Xijun. An experimental study on out-of-plane compressive behavior of a honeycomb paperboard filled with foams[J]. Journal of Vibration and Shock, 2017, 36(20):146-150. (in Chinese)
[20] 卢子兴, 黄筑平, 王仁. 泡沫塑料杨氏模量所满足的微分方程和一些的近似解的讨论[J]. 工程力学, 1995, 12(4):28-35. Lu Zixing, Huang Zhuping, Wang Ren. The differential equations of young's modulus for foamed plastics and the discussion on some approximate solutions[J]. Engineering Mechanics, 1995, 12(4):28-35. (in Chinese)
[21] 卢子兴, 王仁, 黄筑平, 等. 泡沫塑料力学性能研究综述[J]. 力学进展, 1996, 26(3):306-323. Lu Zixing, Wang Ren, Huang Zhuping, et al. A review of studies on the mechanical properties of foam plastics[J]. Advances in Mechanics, 1996, 26(3):306-323. (in Chinese)
[22] Sims G L A, Bennett J A. Cushioning performance of flexible polyurethane[J]. Polymer Engineering and Science, 1998, 38(1):134-142.
[23] Beju Y Z, Mandal J N. Compression creep test on expanded polystyrene (EPS) geofoam[J]. International Journal of Geotechnical Engineering, 2016, 10(4):401-408.
[24] Piao M, Saito K, Kawaguchi K, et al. Effectiveness verification of the hybrid free-fall test[J]. Packaging Technology & Science, 2018, 31(5):331-341.
[25] 霍银磊, 张新昌. 基于能量吸收效率的泡沫塑料缓冲材料选择[J]. 中国塑料, 2017, 20(4):54-57. Huo Yinlei, Zhang Xinchang. Selection of foamed plastic cushioning material based on energy absorption efficiency[J]. China Plastics, 2017, 20(4):54-57. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日