工程力学 ›› 2019, Vol. 36 ›› Issue (1): 207-215.doi: 10.6052/j.issn.1000-4750.2017.11.0881

• 土木工程学科 • 上一篇    下一篇

纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究

曹亮1,2, 张海燕1, 吴波1   

  1. 1. 华南理工大学亚热带建筑科学国家重点实验室, 广东, 广州 510641;
    2. 广州市设计院, 广东, 广州 510620
  • 收稿日期:2017-11-18 修回日期:2018-04-16 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 张海燕(1978-),女,湖南人,教授,博士,从事结构加固、结构抗火和新型混凝土材料领域研究(E-mail:zhanghy@scut.edu.cn). E-mail:zhanghy@scut.edu.cn
  • 作者简介:曹亮(1989-),男,江西人,硕士,主要从事结构抗火、地聚物材料领域的研究(E-mail:caoliangzxc27@163.com);吴波(1968-),男,重庆人,研究员,博士,从事混凝土结构抗震、抗火性能研究和再生混凝土结构领域的研究(E-mail:bowu@scut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51478195);广东省交通运输厅科技项目(科技-2016-02-008);广州市科技计划项目(201804010438)

SHEAR BEHAVIOR OF RC BEAMS STRENGTHENED WITH TEXTILE REINFORCED GEOPOLYMER MORTAR

CAO Liang1,2, ZHANG Hai-yan1, WU Bo1   

  1. 1. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510641, China;
    2. Guangzhou Design Institute, Guangzhou, Guangdong 510620, China
  • Received:2017-11-18 Revised:2018-04-16 Online:2019-01-29 Published:2019-01-10

摘要: 为研究纤维编织网增强地聚物砂浆(TRGM)加固钢筋混凝土构件的可行性,首先通过双剪试验探讨了地聚物砂浆与碳纤维编织网在常温下和高温后的粘结性能,随后开展了地聚物砂浆粘贴不同层数(1层、2层、3层)碳纤维编织网抗剪加固钢筋混凝土梁的静载试验,并与未加固梁、环氧树脂粘贴碳纤维编织网抗剪加固混凝土梁进行了试验比较。试验结果表明,地聚物砂浆与碳纤维编织网的常温粘结强度达2.02 MPa,在温度不高于300℃时强度退化不显著;在未采取任何锚固措施的情况下,采用地聚物砂浆粘贴单层碳纤维编织网加固梁的抗剪承载力相比于未加固梁提高47.1%,提高幅度约为采用环氧树脂粘贴加固的一半;两层TRGM加固梁中的纤维作用发挥得最充分。最后,提出了TRGM抗剪加固梁斜截面承载力的简化计算模型,模型计算结果与试验结果吻合较好。

关键词: 钢筋混凝土梁, 纤维编织网, 地聚物砂浆, 加固, 抗剪承载力

Abstract: To investigate the feasibility of using textile reinforced geopolymer mortar (TRGM) to strengthen concrete members, the bond strength of geopolymer mortar with carbon fiber textile was tested at ambient temperature and after exposure to elevated temperatures, through double shear tests. Then static load tests were conducted on RC beams shear strengthened with different layers of TRGM (1 layer, 2 layers and 3 layers). Also, one unstrengthened beam, and one shear strengthened beam with textile using epoxy resin as adhesive, were tested for comparison. Test results show that the bond strength of geopolymer mortar with carbon fiber textile at ambient temperature reached 2.02 MPa, and that no significant strength degradation occurred at a temperature not higher than 300℃. Compared to the unstrengthened beam, the shear bearing capacity of the RC beam strengthened by a single layer of TRGM, without special anchorage measures, is increased by 47.1%. This increasing extent is about one half of that of the beam strengthened with textile using epoxy resin as adhesive. The highest strengthening effectiveness is achieved in the beam strengthened by two layers of TRGM, in which the tensile strength of fibers was fully utilized. Finally, a simplified model for calculating shear bearing capacity of TRGM strengthened RC beams is proposed, and the calculated results using this model agree well with the test results.

Key words: reinforced concrete beam, textile, geopolymer mortar, strengthening, shear bearing capacity

中图分类号: 

  • TU375.1
[1] Colombo I G, Magri A, Zani G, et al. Textile reinforced concrete:experimental investigation on design parameters[J]. Materials and Structures, 2013, 46(11):1933-1951.
[2] Papanicolaou C G, Triantafillou T C, Papathanasiou M, et al. Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls:out-of-plane cyclic loading[J]. Materials and Structures, 2008, 41(1):143-157.
[3] 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1):27-40. Ai Shanxia, Yin Shiping, Xu Shilang. A review on the development of research and application of textile reinforced concrete[J]. China Civil Engineering Journal, 2015, 48(1):27-40. (in Chinese)
[4] Escrig C, Gil L, Bernat-Maso E, et al. Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar[J]. Construction and Building Materials, 2015, 83:248-260.
[5] Xu S, Shen L, Wang J. The high-temperature resistance performance of TRC thin-plates with different cementitious materials:Experimental study[J]. Construction and Building Materials, 2016, 115:506-519.
[6] 薛亚东, 刘德军, 黄宏伟, 等. 纤维编织网增强混凝土侧面加固偏压短柱试验研究[J]. 工程力学, 2014, 31(3):228-236. Xue Yadong, Liu Dejun, Huang Hongwei, et al. Experimental study on eccentric compression short columns strengthened by textile-reinforced concrete on side[J]. Engineering Mechanics, 2014, 31(3):228-236. (in Chinese)
[7] Abadel A A. Textile-reinforced mortar versus FRP as strengthening material for seismically deficient RC beam-column joints[J]. Journal of Composites for Construction, 2011, 15(6):920-933.
[8] 刘德军, 黄宏伟, 薛亚东, 等. 纤维编织网增强混凝土补强隧道衬砌力学性能研究[J]. 工程力学, 2014, 31(7):91-98, 111 Liu Dejun, Huang Hongwei, Xue Yadong, et al. Research on behavior of tunnel lining strengthened by textile-reinforced concrete[J]. Engineering Mechanics, 2014, 31(7):91-98, 111. (in Chinese)
[9] Duxson P, Provis J L, Lukey G C, et al. The role of inorganic polymer technology in the development of green concrete[J]. Cement and Concrete Research, 2007, 37(12):1590-1597.
[10] Vasconcelos E, Fernandes S, Aguiar J, et al. Concrete retrofitting using metakaolin geopolymer mortars and CFRP[J]. Construction and Building Materials, 2011, 25(8):3213-3221.
[11] Zhang H Y, Kodur V, Wu B, et al. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures[J]. Construction and Building Materials, 2016, 109:17-24.
[12] Chen J F, Teng J G. Anchorage strength models for frp and steel plates bonded to concrete[J]. Journal of Structural Engineering, 2001, 127(7):784-791.
[13] GB/T 3362-2005, 碳纤维复丝拉伸性能试验方法[S]. 北京:中国标准出版社, 2005. GB/T 3362-2005, Test methods for tensile properties of carbon fiber multifilament[S]. Beijing:Standards Press of China, 2005. (in Chinese)
[14] Serbescu A, Guadagnini M, Pilakoutas K. Standardised double-shear test for determining bond of FRP to concrete and corresponding model development[J]. Composites Part B Engineering, 2013, 55(12):277-297.
[15] Cromwell J R, Harries K A, Shahrooz B M. Environmental durability of externally bonded FRP materials intended for repair of concrete structures[J]. Construction and Building Materials, 2011, 25(5):2528-2539.
[16] Ahmed A, Kodur V K R. Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams[J]. Composites Part B Engineering. 2011, 42(2):226-237.
[17] Triantafillou T C, Papanicolaou C G. Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets[J]. Materials and Structures, 2006, 39(1):93-103.
[18] Zhuang H J, Zhang H Y, Xu H. Resistance of geopolymer mortar to acid and chloride attacks[J]. Procedia Engineering, 2017, 210:126-131.
[19] Colangelo F, Cioffi R, Roviello G, et al. Thermal cycling stability of fly ash based geopolymer mortars[J]. Composites Part B:Engineering, 2017, 129:11-17.
[20] Huseien G F, Mirza J, Ismail M, et al. Geopolymer mortars as sustainable repair material:A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 80:54-74.
[21] Firmo J P, Correia J R. Fire behaviour of thermally insulated RC beams strengthened with NSM-CFRP strips:Experimental study[J]. Composites Part B Engineering, 2015, 122:144-154.
[22] ACI 440.2R-08, Guide for design and construction of externally bonded frp systems for strengthening concrete structures[S]. Farmington Hills, MI, USA:American Concrete Institute, 2008.
[23] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture &Building Press, 2010. (in Chinese)
[24] Ombres L. Structural performances of reinforced concrete beams strengthened in shear with a cement-based fiber composite material[J]. Composite Structures, 2015, 122(122):316-329.
[25] CECS 146-2003(2007), 碳纤维片材加固混凝土结构技术规程[S]. 北京:中国计划出版社出版, 2007. CECS 146-2003(2007), Technical specification for strengthening concrete structures with carbon fiber reinforced polymer laminate[S]. Beijing:China Planning Press, 2007. (in Chinese)
[1] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
[2] 杨勇, 陈阳. PBL剪力连接件抗剪承载力试验研究[J]. 工程力学, 2018, 35(9): 89-96.
[3] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[4] 吕伟荣, 朱峰, 卢倍嵘, 石卫华, 张家志, 何潇锟, 卿胜青. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138.
[5] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186.
[6] 余波, 陈冰, 唐睿楷. 钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(5): 170-179.
[7] 黄维, 钱江, 周知. 竖向混合结构转换柱构件抗剪承载力研究[J]. 工程力学, 2018, 35(4): 96-106.
[8] 张家广, 吴斌, 赵俊贤. 防屈曲支撑加固钢筋混凝土框架的实用设计方法[J]. 工程力学, 2018, 35(3): 151-158.
[9] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159-166.
[10] 孙振宇, 张顶立, 房倩, 台启民, 于富才. 基于超前加固的深埋隧道围岩力学特性研究[J]. 工程力学, 2018, 35(2): 92-104.
[11] 史艳莉, 周绪红, 鲜威, 王文达. 无端板矩形钢管混凝土构件基本剪切性能研究[J]. 工程力学, 2018, 35(12): 25-33.
[12] 杜新喜, 胡锐, 袁焕鑫, 程晓燕, 宗亮. 混合配筋预应力混凝土管桩抗剪性能试验研究[J]. 工程力学, 2018, 35(12): 71-80.
[13] 余波, 陈冰. 锈蚀钢筋混凝土梁抗剪承载力计算的概率模型[J]. 工程力学, 2018, 35(11): 115-124.
[14] 杨勇, 陈展, 王念念, 张波. 预应力钢带加固RC框架节点抗震性能试验研究[J]. 工程力学, 2018, 35(11): 106-114,154.
[15] 邓明科, 杨铄, 王露. 高延性混凝土加固无筋砖墙抗震性能试验研究与承载力分析[J]. 工程力学, 2018, 35(10): 101-111,123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日