工程力学 ›› 2019, Vol. 36 ›› Issue (1): 200-206.doi: 10.6052/j.issn.1000-4750.2017.11.0879

• 土木工程学科 • 上一篇    下一篇

LY315钢屈曲约束支撑耗能性能试验研究

杨璐1, 卫璇1, 施刚2, 肖世勇3   

  1. 1. 北京工业大学建筑工程学院, 北京 100124;
    2. 清华大学土木工程安全与耐久教育部重点试验室, 北京 100084;
    3. 云南震安减震科技股份有限公司, 云南, 昆明 650211
  • 收稿日期:2017-11-17 修回日期:2018-01-16 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 杨璐(1982-),男,湖北人,教授,博士,博导,从事钢结构及施工技术研究(E-mail:lyang@bjut.edu.cn). E-mail:lyang@bjut.edu.cn
  • 作者简介:卫璇(1992-),男,河南人,硕士生,主要从事钢结构研究(E-mail:weiyxmm@163.com);施刚(1977-),男,安徽人,教授,博士,博导,从事结构工程研究(E-mail:shigang@Tsinghua.edu.cn);肖世勇(1981-),男,云南人,机械工程师,工学学士,从事减震产品研究(E-mail:279657333@qq.com).
  • 基金资助:
    北京市科技新星计划项目(2016117)

EXPERIMENT ON ENERGY DISSIPATION PERFORMANCE OF LY315 STEEL BUCKLING-RESTRAINED BRACES

YANG Lu1, WEI Xuan1, SHI Gang2, XIAO Shi-yong3   

  1. 1. The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China;
    2. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    3. Yunnan Quakesafe Seismic Isolation Technologies Co. Ltd, Kunming, Yunnan 650211, China
  • Received:2017-11-17 Revised:2018-01-16 Online:2019-01-29 Published:2019-01-10

摘要: 采用新型抗震结构用软钢LY315作为内核材料,设计加工了3根全钢型装配式屈曲约束支撑。对支撑进行了拉压往复加载试验,并对其力学性能进行分析,研究此类新型屈曲约束支撑的耗能性能。结果表明:支撑构造合理,滞回曲线饱满,耗能性能稳定;试件的最大位移延性系数均大于15,抗拉应变强化系数在1.21~1.29,等效粘性阻尼比在0.442~0.465,累积塑性变形均大于500倍的屈服位移;对试件的疲劳加载进行分析,各项参数均满足JGJ 297-2013《建筑消能减震技术规程》的要求,表明试件有良好的低周疲劳性能。

关键词: 屈曲约束支撑, 耗能性能, 低周疲劳性能, LY315钢材, 往复加载试验

Abstract: Three buckling-restrained braces (BRBs) assembled with section steel were designed using novel soft steel LY315 as the core material. Cyclic loading tests on three specimens were conducted to analyze the mechanical properties and the energy dissipation of the new type of BRBs. The results indicate that the structure of BRBs is reasonable and all specimens exhibit a full hysteretic curve and stable energy dissipation performance. The ultimate ductility coefficients of specimens were greater than 15. The strain hardening coefficients were between 1.21 and 1.29. The equivalent damping ratios were between 0.442 and 0.465. The cumulative plastic deformations were more than 500 times the yield displacement. The fatigue loading was analyzed. All performance parameters were able to meet the requirements in JGJ 297-2013 'Technical specification for seismic energy dissipation of buildings', indicating excellent low-cycle fatigue behavior of the BRBs.

Key words: buckling-restrained braces, energy dissipation performance, low-cycle fatigue behavior, LY315 steel, cyclic loading test

中图分类号: 

  • TU352.1+1
[1] Yoshino T, Karino Y. Experimental study on shear wall with braces:Part 2. Summaries of technical papers of annual meeting[J]. Architectural Institute of Japan, Structural Engineering Section, 1971, 11:403-404. (in Japanese)
[2] Xie Q. State of the art of buckling-restrained braces in Asia[J]. Journal of Constructional Steel Research, 2005, 61(6):727-748.
[3] Iwata M, Murai M. Buckling-restrained brace using steel mortar planks; performance evaluation as a hysteretic damper[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(14):1807-1826.
[4] Guerrero H, Ruíz-García J, Escobar J A, et al. Response to seismic sequences of short-period structures equipped with Buckling-Restrained Braces located on the lakebed zone of Mexico City[J]. Journal of Constructional Steel Research, 2017, 137:37-51.
[5] Tremblay R, Bolduc P, Neville R, et al. Seismic testing and performance of buckling-restrained bracing systems[J]. Canadian Journal of Civil Engineering, 2006, 33(2):183-198.
[6] 贾明明, 张素梅. 抑制屈曲支撑滞回性能分析[J]. 天津大学学报(自然科学与工程技术版), 2008, 41(6):736-744. Jia Mingming, Zhang Sumei. Analysis of hysteretic behavior of buckling-restrained brace[J]. Journal of Tianjin University, 2008, 41(6):736-744. (in Chinese)
[7] 张东彬, 潘鹏, 王萌资, 等. 开长孔式叠层钢管屈曲约束支撑试验研究[J]. 土木工程学报, 2016, 49(12):9-15. Zhang Dongbin, Pan Peng, Wang Mengzi, et al. Experimental study on performance of a bucklingrestrained brace consisting of three steel tubes with slotted holes in the middle tube[J]. China Civil Engineering Journal, 2016, 49(12):9-15. (in Chinese)
[8] 张艳霞, 李振兴, 刘安然, 等. 自复位可更换软钢耗能支撑性能研究[J]. 工程力学, 2017, 34(8):180-193. Zhang Yanxia, Li Zhenxing, Liu Anran, et al. Research on the behavior of self-centering replaceable mild steel energy-dissipating braces[J]. Engineering Mechanics, 2017, 34(8):180-193. (in Chinese)
[9] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(9):1-14. Guo Yanlin, Tong Jingzhong, Zhou Peng. Research progress of buckling restrained braces:types, design methods and applications[J]. Engineering Mechanics, 2016, 33(9):1-14. (in Chinese)
[10] Guo Y L, Fu P P, Zhou P, et al. Elastic buckling and load resistance of a single cross-arm pre-tensioned cable stayed buckling-restrained brace[J]. Engineering Structures, 2016, 126:516-530.
[11] 高向宇, 张慧, 杜海燕, 等. 防屈曲支撑恢复力的特点及计算模型研究[J]. 工程力学, 2011, 28(6):19-28. Gao Xiangyu, Zhang Hui, Du Haiyan, et al. Study on characterization and modeling of buckling-restrained brace[J]. Engineering Mechanics, 2011, 28(6):19-28. (in Chinese)
[12] Dusicka P, Tinker J. Global restraint in ultra-lightweight buckling-restrained braces[J]. Journal of Composites for Construction, 2013, 17(1):139-150.
[13] Usami T, Wang C L, Funayama J. Developing highperformance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(4):643-661.
[14] 黄海涛, 尹学军, 高向宇, 等. 足尺错十字截面组合热轧角钢防屈曲支撑试验研究[J]. 土木工程学报, 2010, 43(增刊2):164-169. Huang Haitao, Yin Xuejun, Gao Xiangyu, et al. Static test studies on full-scale buckling-restrained brace specimens with quasi-cross section of steel angles[J]. China Civil Engineering Journal, 2010, 43(Suppl 2):164-169. (in Chinese)
[15] 王佼姣, 石永久, 严红, 等. 低屈服点全钢防屈曲支撑抗震性能试验研究[J]. 土木工程学报, 2013, 46(10):9-16. Wang Jiaojiao, Shi Yongjiu, Yan Hong, et al. Experimental study on the seismic behavior of all-steel buckling-restrained brace with low yield point[J]. China Civil Engineering Journal, 2013, 46(10):9-16. (in Chinese)
[16] 孙飞飞, 刘猛, 李国强, 等. 国产TJ-I型屈曲约束支撑的性能研究[J]. 河北工程大学学报(自然科学版), 2009, 26(1):5-9. Sun Feifei, Liu Meng, Li Guoqiang, et al. Improvement and experimental study of domestic TJ-1 type bucklingrestrained brace[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2009, 26(1):5-9. (in Chinese)
[17] 严红, 潘鹏, 王元清,等. 一字形全钢防屈曲支撑耗能性能试验研究[J]. 建筑结构学报, 2012, 33(11):142-149. Yan Hong, Pan Peng, Wang Yuanqing, et al. Experimental study of buckling-restrained brace with in-line steel core plate encased in double web wide flange steel outer unit[J]. Journal of Building Structures, 2012, 33(11):142-149. (in Chinese)
[18] GB/T 228-2002, 金属材料室温拉伸试验方法[S]. 北京:中国标准出版社, 2002. GB/T 228-2002, Metallic materials:tensile testing at ambient temperature[S]. Beijing:China Standard Press, 2002. (in Chinese)
[19] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[20] JGJ 99-2015, 高层民用建筑钢结构技术规程[S]. 北京:中国建筑工业出版社, 2015. JGJ 99-2015, Technical specification for steel structure of tall building[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[21] 赵俊贤, 吴斌. 防屈曲支撑的工作机理及稳定性设计方法[J]. 地震工程与工程振动, 2009, 29(3):131-139. Zhao Junxian, Wu Bin. Working mechanism and stability design methods of buckling-restrained braces[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(3):131-139. (in Chinese)
[22] ANSI/AISC 341-05, Seismic provisions for structural steel building[S]. Chicago:AISC, 2010.
[23] 周云, 龚晨, 陈清祥,等. 开孔钢板装配式屈曲约束支撑减震性能试验研究[J]. 建筑结构学报, 2016, 37(8):101-107. Zhou Yun, Gong Chen, Chen Qingxiang, et al. Experimental study on seismic performance of perforated steel-plate assembled buckling-restrained brace[J]. Journal of Building Structures, 2016, 37(8):101-107. (in Chinese)
[24] JGJ 297-2013, 建筑消能减震技术规程[S]. 北京:中国建筑工业出版社, 2013. JGJ 297-2013, Technical specification for seismic energy dissipation of buildings[S]. Beijing:China Architecture & Building Press, 2013. (in Chinese)
[1] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[2] 郑山锁, 张晓辉, 黄威曾, 赵旭冉. 近海大气环境下锈蚀平面钢框架抗震性能试验研究及有限元分析[J]. 工程力学, 2018, 35(7): 62-73,82.
[3] 侯和涛, 朱文灿, 曲哲, 崔士起. 屈曲约束支撑钢筋混凝土框架结构干式柔性梁柱节点的试验研究[J]. 工程力学, 2018, 35(6): 151-161.
[4] 郑山锁, 张晓辉, 赵旭冉, 刘毅. 近海大气环境下锈蚀钢框架梁抗震性能试验及恢复力模型研究[J]. 工程力学, 2018, 35(12): 98-106,115.
[5] 梁兴文, 杨鹏辉, 何伟, 辛力, 李林. 钢筋混凝土框架-纤维增强混凝土耗能墙结构抗震性能试验研究[J]. 工程力学, 2018, 35(1): 209-218.
[6] 王海深, 潘鹏, 聂鑫, 刘航. 三套管自复位屈曲约束支撑滞回性能研究[J]. 工程力学, 2017, 34(11): 59-65.
[7] 李帼昌, 李文明. 一种角钢式屈曲约束支撑与混凝土梁柱连接节点有限元分析[J]. 工程力学, 2016, 33(增刊): 67-71.
[8] 冯玉龙, 吴京, 孟少平. 连续摇摆墙-屈曲约束支撑框架抗震性能分析[J]. 工程力学, 2016, 33(增刊): 90-94.
[9] 冯玉龙, 吴京, 孟少平. 屈曲约束支撑框架的支撑布置原则研究[J]. 工程力学, 2016, 33(12): 104-111.
[10] 郑山锁, 张晓辉, 王晓飞, 程洋, 左英. 锈蚀钢框架柱抗震性能试验研究及有限元分析[J]. 工程力学, 2016, 33(10): 145-154.
[11] 李涛, 陈泉, 王春林, 吴京. 屈曲约束支撑端部塑性扭转屈曲试验研究[J]. 工程力学, 2014, 31(3): 168-172.
[12] 孙利民, 魏俊, 刘建新, 王红伟. 耗能型辅助墩抗震性能数值研究[J]. 工程力学, 2014, 31(12): 57-67.
[13] 李帼昌,王硕,田磊,鲍成园. 屈曲约束支撑混凝土框架节点性能的有限元分析[J]. 工程力学, 2013, 30(增刊): 212-216.
[14] 吴京, 梁仁杰, 王春林, 石建华. 屈曲约束支撑核心单元的多波屈曲过程研究[J]. 工程力学, 2012, 29(8): 136-142.
[15] 梁兴文;李方圆;张 涛;邓明科. 新配筋方案小跨高比连梁抗震性能试验研究[J]. 工程力学, 2009, 26(12): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248 -256 .
[2] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1): 70 -79,87 .
[3] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[4] 高彦芳, 陈勉, 林伯韬, 金衍. 多相非饱和多重孔隙介质的有效应力定律[J]. 工程力学, 2019, 36(1): 32 -43 .
[5] 于潇, 陈力, 方秦. 一种量测松散介质对应力波衰减效应的实验方法及其在珊瑚砂中的应用[J]. 工程力学, 2019, 36(1): 44 -52,69 .
[6] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 -14,43 .
[7] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15 -22 .
[8] 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计:复合Hermite模型[J]. 工程力学, 2019, 36(1): 23 -31 .
[9] 白鲁帅, 李钢, 靳永强, 李宏男. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53 -60 .
[10] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96 -103,118 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日