工程力学 ›› 2019, Vol. 36 ›› Issue (1): 44-52,69.doi: 10.6052/j.issn.1000-4750.2017.11.0867

• 基本方法 • 上一篇    下一篇

一种量测松散介质对应力波衰减效应的实验方法及其在珊瑚砂中的应用

于潇, 陈力, 方秦   

  1. 陆军工程大学 爆炸冲击防灾减灾国家重点实验室, 南京 210007
  • 收稿日期:2017-11-15 修回日期:2018-03-15 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 陈力(1982-),男,江苏人,副教授,博士,博导,主要从事抗爆结构研究(E-mail:chenli1360@qq.com). E-mail:chenli1360@qq.com
  • 作者简介:于潇(1990-),男,黑龙江人,博士生,主要从事抗爆结构研究(E-mail:yuxiao10@foxmail.com);方秦(1962-),男,福建人,教授,博士,博导,主要从事结构抗爆研究(E-mail:fangqinjs@139.com).
  • 基金资助:
    国家重点研发计划项目(2016YFC0305200);国家自然科学基金项目(51622812,51427807)

A TESTING METHOD ON THE ATTENUATION OF STRESS WAVES IN LOOSE POROUS MEDIA AND ITS APPLICATION TO CORAL SAND

YU Xiao, CHEN Li, FANG Qin   

  1. State Key Laboratory of Disaster, Prevention & Mitigation of Explosion & Impact, Army Engineering University, Nanjing 210007, China
  • Received:2017-11-15 Revised:2018-03-15 Online:2019-01-29 Published:2019-01-10

摘要: 砂土等松散介质对在其中传播的应力波有非常明显的衰减作用,因此,松散介质常常作为爆炸波消波材料被广泛应用于防护工程中。为了准确地量测松散介质对应力波的衰减效应,基于并改进了传统SHPB装置,提出了一种定量研究应力波在砂土介质中衰减规律的新方法。该文方法适用于所有在冲击荷载的应变率范围内(约1~102 s-1)应变率效应不明显的松散介质。方法基于拟合的透射系数T2,通过杆中的三波(入射波、反射波和透射波)计算得到试件两端真实的峰值应力,还可以计算试件的弹性波速、峰值应力速度、试件端部应力波的前沿升时等关键参数,简单实用,可操作性强。采用提出的方法,对干燥珊瑚砂进行了应力波衰减实验,得出了应力波荷载峰值随传播距离的衰减规律。经对比实验与参数讨论发现,拟合透射系数引起的结果误差不超过2.83%,具有很好的可靠性与实用性。

关键词: 防护工程, 松散介质, 应力波衰减, SHPB, 珊瑚砂

Abstract: Stress waves exhibit excellent attenuation characteristics when propagating in loose porous media, which is commonly used for wave mitigation in protection engineering. In order to accurately measure the stress wave attenuation effect of loose porous media, a new method to quantitatively study the attenuation of one-dimensional strain waves in loose porous media by an improving SHPB device was presented. The proposed method is suitable for loose porous media that is independent of or insensitive to strain rate within the range of strain rate of impact load (about 1-102 s-1). Based on the fitting transmission coefficient T2, the true peak stress at both ends of the specimen could be calculated by three waves (incident wave, reflected wave and transmitted wave) in the bars. Other key parameters, such as the elastic wave velocity, the peak stress velocity and the rise time of the stress wave at both end of the specimen, can also be tested by the method. By using the new testing method, the stress wave attenuation in dry coral sand was tested. Parametric analysis shows that the error of the fitting transmission coefficient of T2 was less than 2.83%, indicating satisfactory reliability and practicability of the proposed method.

Key words: protective structure, loose porous media, stress wave attenuation, SHPB, coral sand

中图分类号: 

  • O347.4
[1] Li X M, Wang M, Guo X, et al. Measurement of stress attenuation effect in the sand under explosion wave[J]. Applied Mechanics & Materials, 2014, 556-562:3187-3190.
[2] Li J C, Ma G W. Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(3):471-478.
[3] Luo H, Cooper W L, Lu H. Effect of moisture on the compressive behavior of dense eglin sand under confinement at high strain rates[J]. International Journal of Impact Engineering, 2014, 65(65):40-55.
[4] Hampton D, Wetzel R A. Stress wave propagation in confined soils[R]. Chicago:ⅡT Research Institute Technology Center, 1966:3.
[5] Akai K, Hori M, Ando N, et al. Shock tube study on stress wave propagation in confined soils[C]//Proceedings of the Japan Society of Civil Engineers. Japan Society of Civil Engineers, 1972(200):127-141.
[6] Seaman L. One-dimensional stress wave propagation in soils[R]. Washington:Defence Atomic Support Agency, 1966:3.
[7] Akai K, Tokuda M, Kiuchi T. Experimental study on the propagation of stress wave in cohesive soils[C]//Proceedings of the Japan Society of Civil Engineers. Japan Society of Civil Engineers, 1969(161):59-67.
[8] Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London, 1914, 213(612):437-456.
[9] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society. Section B, 1949, 62(11):676.
[10] Chen W W, Song B. Split Hopkinson (Kolsky) bar:Design, testing and applications[M]. New York:Springer Science & Business Media, 2010:1-3.
[11] Zhao H, Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains[J]. International Journal of Solids and structures, 1996, 33(23):3363-3375.
[12] 田杰, 胡时胜. G50钢动态力学性能的实验研究[J]. 工程力学, 2006, 23(6):107-109. Tian Jie, Hu Shisheng. Research of dynamic mechanical behaviors of G50 steel[J]. Engineering Mechanics, 2006, 23(6):107-109. (in Chinese)
[13] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. Experimental characterization[J]. International Journal of Impact Engineering, 2001, 25(9):869-886.
[14] 方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(5):1-14. Fang Qin, Hong Jian, Zhang Jinhua, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014, 31(5):1-14. (in Chinese)
[15] 夏昌敬, 谢和平, 鞠杨, 等. 冲击载荷下孔隙岩石能量耗散的实验研究[J]. 工程力学, 2006, 23(9):1-5. Xia Changjing, Xie heping, Ju yang, et al. Experimental study of energy dissipation of porous rock under impact loading[J]. Engineering Mechanics, 2006, 23(9):1-5. (in Chinese)
[16] Chen W, Ravichandran G. Dynamic compressive failure of a glass ceramic under lateral confinement[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(8):1303-1328.
[17] Yu J L, Li J R, Hu S S. Strain-rate effect and micro-structural optimization of cellular metals[J]. Mechanics of Materials, 2006, 38(1):160-170.
[18] Luo Y, Lü L, Sun B, et al. Transverse impact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites[J]. Composite Structures, 2007, 81(2):202-209
[19] Song B, Chen W, Ge Y, et al. Dynamic and quasi-static compressive response of porcine muscle[J]. Journal of Biomechanics, 2007, 40(13):2999-3005.
[20] Ross C A, Nash P T, Friesenhahn G J. Pressure waves in soils using a split-Hopkinson pressure bar[R]. San Antonio:Southwest Research Institute, 1986:42-49..
[21] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究[D]. 合肥:中国科学技术大学, 2007. Zhao Kai. The attenuation and dispersion effects on explosive wave of layered protective engineering[D]. Hefei:University of Science and Technology of China, 2007. (in Chinese)
[22] Bragov A M, Lomunov A K, Sergeichev I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates[J]. International Journal of Impact Engineering, 2008, 35(9):967-976.
[23] Felice C W, Brown J A, Gaffney E S, et al. Investigation into the high strain-rate behavior of compacted sand using the split-Hopkinson pressure bar technique[R]. Los Alamos:Los Alamos National Laboratory, 1985:6-7.
[24] 郑文, 徐松林, 胡时胜. 侧限压缩下干燥砂的动态力学性能[J]. 爆炸与冲击, 2011, 31(6):619-623. Zheng Wen, Xu Sonnglin, Hu Shisheng. Dynamic mechanical properties of dry sand under confined compression[J]. Explosion and Shock Waves, 2011, 31(6):619-623. (in Chinese)
[25] Song B, Chen W, Luk V. Impact compressive response of dry sand[J]. Mechanics of Materials, 2009, 41(6):777-785.
[26] 王礼立. 应力波基础[M]. 北京:国防工业出版社, 1985:45-47. Wang Lili. Foundation of stress waves[M]. Beijing:National Defense Industry Press, 1985:45-47. (in Chinese)
[27] Kondner R L. Hyperbolic stress-strain response:Cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(1):115-144.
[28] Bragov A M, Lomunov A K, Sergeichev I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates[J]. International Journal of Impact Engineering, 2008, 35(9):967-976.
[29] Ravi-Chandar K, Ma Z. Inelastic deformation in polymers under multiaxial compression[J]. Mechanics of Time-Dependent Materials, 2000, 4(4):333-357
[30] 鲁晓兵, 谈庆明, 俞善炳, 等. 饱和砂土在往复荷载作用下有侧限的本构关系实验研究[J]. 岩石力学与工程学报, 2001, 20(6):859-863. Lu Xiaobing, Tan Qingming, Yu Shanbing, et al. Experimental study on constitutive relation of laterally constrained saturated sand under cyclic compressive loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6):859-863. (in Chinese)
[31] User guide for Origin 8.1[M]. Northampton, USA:OriginLab Corporation, 2009:365.
[32] Omidvar M, Iskander M, Bless S. Stress-strain behavior of sand at high strain rates[J]. International Journal of Impact Engineering, 2012, 49(49):192-213.
[33] Whitman R V, Miller E T, Moore P J. Yielding and locking of confined sand[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90(90):57-84.
[34] Akers S A. Uniaxial strain response of Enewetak Beach sand[M]. Vicksburg:US Army Engineer Waterways Experiment Station, 1986:85.
[1] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
[2] 李潇, 方秦, 孔祥振, 吴昊. 数值模拟中混凝土类材料应变率效应曲线的惯性效应修正[J]. 工程力学, 2018, 35(12): 46-53.
[3] 胡波, 李国强. 基于Campbell模型的卡车与防撞柱最大碰撞力修正计算方法[J]. 工程力学, 2017, 34(7): 79-88,155.
[4] 王立岩, 李东升, 李宏男. 基于HHT的非线性振动系统参数识别研究[J]. 工程力学, 2017, 34(1): 28-32,44.
[5] 潘柏州, 韦灼彬. 原材料对珊瑚砂混凝土抗压强度影响的试验研究[J]. 工程力学, 2015, 32(增刊): 221-225.
[6] 楼梦麟, 韩博宇. 高层建筑环境振动TLD控制研究[J]. 工程力学, 2015, 32(增刊): 184-190.
[7] 何远明, 霍静思, 陈柏生, 黄政宇. 高温下混凝土SHPB动态力学性能试验研究[J]. 工程力学, 2012, 29(9): 200-208.
[8] 刘军忠;许金余;吕晓聪;王泽东;张磊. 围压下岩石的冲击力学行为及动态统计损伤本构模型研究[J]. 工程力学, 2012, 29(1): 55-63.
[9] 尚兵;吴立朋;庄茁. 应力不均匀性对混凝土材料动态实验结果的影响[J]. 工程力学, 2011, 28(12): 33-38.
[10] 焦楚杰;李 祯;高 乐. 混凝土SHPB试验的数值模拟[J]. 工程力学, 2010, 27(增刊Ⅱ): 196-200.
[11] 郑 秋;霍静思;陈柏生;肖 岩;. 不同温度下钢管混凝土冲击力学性能试验研究[J]. 工程力学, 2009, 26(5): 142-147.
[12] 刘海峰;宁建国. 冲击荷载作用下混凝土动态本构模型的研究[J]. 工程力学, 2008, 25(12): 135-140.
[13] 朱 珏;胡时胜;王礼立;. 率相关混凝土类材料SHPB试验的若干问题[J]. 工程力学, 2007, 24(1): 0-087.
[14] 夏昌敬;谢和平;鞠杨;周宏伟. 冲击载荷下孔隙岩石能量耗散的实验研究[J]. 工程力学, 2006, 23(9): 1-5.
[15] 王焕然;谢书港;陈大年;俞宇颖;刘国庆. 试论镁铝合金高应变率单轴压缩拟合本构关系的代入校核[J]. 工程力学, 2006, 23(9): 179-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248 -256 .
[2] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1): 70 -79,87 .
[3] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[4] 高彦芳, 陈勉, 林伯韬, 金衍. 多相非饱和多重孔隙介质的有效应力定律[J]. 工程力学, 2019, 36(1): 32 -43 .
[5] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 -14,43 .
[6] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15 -22 .
[7] 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计:复合Hermite模型[J]. 工程力学, 2019, 36(1): 23 -31 .
[8] 白鲁帅, 李钢, 靳永强, 李宏男. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53 -60 .
[9] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96 -103,118 .
[10] 贾布裕, 颜全胜, 余晓琳, 杨铮. 考虑行人随机性的人行桥人致横向振动稳定性分析[J]. 工程力学, 2019, 36(1): 155 -164 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日