工程力学 ›› 2018, Vol. 35 ›› Issue (6): 200-208,230.doi: 10.6052/j.issn.1000-4750.2017.11.0858

• 土木工程学科 • 上一篇    下一篇

嘉德艺术中心结构模型振动台试验与竖向地震作用分析

甄伟1,2, 盛平2, 杨庆山1, 田春雨3   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 北京市建筑设计研究院有限公司, 北京 100045;
    3. 中国建筑科学研究院, 北京 100036
  • 收稿日期:2017-11-12 修回日期:2018-03-19 出版日期:2018-06-25 发布日期:2018-07-11
  • 通讯作者: 甄伟(1978-),男,河北保定人,教授级高工,博士,主要从事高层建筑抗震研究(E-mail:zhenwei@biad.com.cn). E-mail:zhenwei@biad.com.cn
  • 作者简介:杨庆山(1968-),男,河北人,教授,博士,副院长,主要从事高层建筑抗震和风工程研究研究(E-mail:qshyang@bjtu.edu.cn);盛平(1964-),男,江苏人,教授级高工,硕士,副总工程师,主要从事高层建筑抗震研究(E-mail:13371736706@126.com);田春雨(1977-),男,黑龙江人,研究员,博士,工业化中心主任,主要从事高层建筑和组合结构研究(E-mail:tianchunyu@cabrtech.com).
  • 基金资助:
    国家自然科学基金项目(51408034)

STUDY ON VERTICAL SEISMIC ACTION AND SHAKING TABLE TEST OF GUARDIAN ART CENTER

ZHEN Wei1,2, SHENG Ping2, YANG Qing-shan1, TIAN Chun-yu3   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Beijing Institute of Architectural Design, Beijing 100045, China;
    3. China Academy of Building Research, Beijing 100036, China
  • Received:2017-11-12 Revised:2018-03-19 Online:2018-06-25 Published:2018-07-11

摘要: 嘉德艺术中心是同时带有大悬臂和大跨转换层的复杂结构,为保证该结构的抗震安全性,进行了1:16的缩比振动台试验,并利用ABAQUS进行了弹塑性分析。研究了结构的动力特性,研究了结构在8度多遇、设防、罕遇地震及9度罕遇地震下的加速度响应、位移响应及损伤过程。并讨论了大悬臂桁架和大跨转换层桁架竖向地震作用计算方法。研究结果表明:该结构具有良好的变形能力和延性,具有足够的抗震储备能力,满足规范"小震不坏,中震可修,大震不倒"的设防要求;采用竖向振型分解反应谱法计算的竖向地震作用并不一定大于规范简化方法的结果,实际设计中宜取两者的包络;且对于8度抗震设防的大悬臂桁架和大跨转换层桁架,规范简化方法计算的竖向地震作用偏小,宜取重力荷载代表值的15%计算竖向地震作用。

关键词: 复杂结构体系, 振动台试验, 长悬挑桁架, 大跨度转换层, 竖向地震作用

Abstract: The Guardian Art Center is a complex structure with large cantilevers and large span transfer trusses. To ensure its aseismic safety, a 1:16 scaled shaking table test is carried out and the corresponding nonlinear time history analysis is conducted by using ABAQUS. The dynamic characteristics of the structure are studied firstly, and then the acceleration, displacement, frequency, and damage process are studied in both horizontal and vertical directions due to the rare earthquake of 8-degree fortification and the rare earthquake of 9-degree fortification. Finally, the calculation methods of vertical seismic action of a cantilever truss and a long span transfer truss are discussed. The results show that the structure has the great capacity of deformation and ductility and enough collapse margin ratio to meet the requirements of the ‘damage not occur under frequency earthquake, damage is repairable under moderate earthquake, and collapse not occur under rare earthquake’. The vertical seismic action calculated by the vertical mode decomposition response spectrum method is not necessarily larger than the result of the simplified method, and the two envelopes should be adopted in an actual design. For the studied complex structure with a large cantilever truss and a long-span transfer truss, the vertical seismic action calculated by the simplified method is smaller than the experimental result. Hence, 15% of the seismic weight is suggested to calculate the vertical seismic action.

Key words: complex structural system, shaking table test, long cantilever truss, large span transfer truss, vertical seismic action

中图分类号: 

  • TU375.4
[1] 徐培福. 复杂高层建筑结构设计[M]. 北京:中国建筑工业出版社, 2005. Xu Peifu. Design of complex tall buildings[M]. Beijing:China Architecture & Building Press, 2005. (in Chinese)
[2] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[3] 周正华, 周雍年, 卢滔, 等. 竖向地震动特征研究[J]. 地震工程与工程振动, 2003, 23(3):25-29. Zhou Zhenghua, Zhou Yongnian, Lu Tao, et al. Study on characteristics of vertical ground motion[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3):25-29. (in Chinese)
[4] 肖亮. 不规则建筑结构地震反应分析与性能评估的研究[D]. 长沙:湖南大学, 2009. Xiao Liang. Research on seismic response analysis and performance evaluation of irregular building structures[D]. Changsha:Hunan University, 2009. (in Chinese)
[5] Federal Emergency Management Agency. Quantification of building seismic performance factors, Report No. FEMA P-695[R]. Washington D C:Federal Emergency Management Agency, 2009.
[6] 谢俊举, 温增平, 高孟潭, 等. 2008年汶川地震近断层竖向与水平向地震动特征[J]. 地球物理学报, 2010, 53(8):1796-1805. Xie Junju, Wen Zengpin, Gao Mengtan, et al. Characteristics of near-fault vertical and horizontal ground motion from the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2010, 53(8):1796-1805. (in Chinese)
[7] 冯丽娟, 肖从真, 徐自国, 等. 悬挑结构竖向地震作用分析及设计要点[J]. 土木工程学报, 2008, 41(3):65-70. Feng Lijuan, Xiao Congzhen, Xu Ziguo, et al. Vertical earthquake analysis and key design points for cantilevered structures[J]. China Civil Engineering Journal, 2008, 41(3):65-70. (in Chinese)
[8] 黄吉锋, 邵弘, 杨志勇. 复杂建筑结构竖向地震作用的振型分解反应谱分析[J]. 建筑结构学报, 2009, 30(增刊1):110-114. Huang Jifeng, Shao Hong, Yang Zhiyong. Modal analysis method by response spectrum for complicated building structures under vertical earthquake action[J]. Journal of Building Structure, 2009, 30(Suppl 1):110-114. (in Chinese)
[9] 齐娟. 满配重与欠配重模型振动台试验技术研究[D]. 北京:中国建筑科学研究院, 2009. Qi Juan. Full Weight and Less Weight Models Research in the Shaking Table Test Technology[D]. Beijing:China Aeademy of Building Research, 2009. (in Chinese)
[10] Moaveni B, He X, Conte J P, et al. Damage identification study of a seven-story full-scale building slice tested on the UCSD-NEES shake table[J]. Structural Safety, 2010, 32(5):347-356.
[11] Zhou Y, Lu X, Qian J, Dynamic test on a multi-tower connected building structure[C]. Proceedings of the 3rd International Conference on Advances in Experimental Structural Engineering. San Francisco, 2009.
[12] 周颖, 吕西林. 不同结构的振动台试验模型等效设计方法[J]. 结构工程师, 2006, 22(4):38-40. Zhou Ying, Lü Xilin. Shaking table test model design in different structures[J]. Structural Engineers, 2006, 22(4):38-40. (in Chinese)
[13] Lee S K, Park E C, Min K W, Park J H. Real-time substructuring technique for the shaking table test of upper substructures[J]. Engineering Structures, 2007, 29(9):2219-2232.
[14] 雷拓, 刘伯权, 刘锋. 基于ABAQUS显式分析的梁单元材料模型开发应用[J]. 工程力学, 2013, 30(6):259-268. Lei Tuo, Liu Boquan, Liu Feng. Development and application of material constitutive models based on ABAQUS/explicit beam elements[J]. Engineering Mechanics, 2013, 30(6):259-268. (in Chinese)
[15] GB 50011-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010:207-220. GB50011-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2010:207-220. (in Chinese)
[16] 李祥秀, 谭平, 刘良坤, 等. 巨-子结构控制体系振动台试验与有限元模型对比分析[J]. 工程力学, 2016, 33(9):76-84. Li Xiangxiu, Tan Ping, Liu Liangkun, et al. Comparative analysis of mega-sub control system by shaking table test and finite element modeling[J]. Engineering Mechanics, 2016, 33(9):76-84. (in Chinese)
[17] 王斌, 郑山锁, 国贤发, 等. 型钢高强高性能混凝土框架柱地震损伤分析[J]. 工程力学, 2012, 29(2):61-68. Wang Bin, Zheng Shansuo, Guo Xianfa, et al. Seismic damage analysis for SRH SHPC frame columns[J]. Engineering Mechanics, 2012, 29(2):61-68. (in Chinese)
[18] 于婧. 大跨结构竖向地震作用及对支承结构影响的研究[D]. 陕西:西安建筑科技大学, 2008. Yu Jing. Study of vertical earthquake action of long-span structure and the effect of its support structure[D]. Shaanxi:Xi'an University of Architecture and Technology, 2008. (in Chinese)
[1] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2): 36-44.
[2] 郑文彬, 张建伟, 曹万林. 单排配筋L形截面剪力墙振动台试验研究[J]. 工程力学, 2018, 35(S1): 134-139.
[3] 李万润, 王辉, 孙玉萍, 杜永峰, 王雪平, 吴忠铁. 考虑隔震支座特性的隔震结构多尺度模拟与试验验证[J]. 工程力学, 2018, 35(6): 115-122,131.
[4] 李勇, 闫维明, 刘晶波, 解梦飞. 近断层高架连续梁桥地震易损性与振动台试验研究[J]. 工程力学, 2018, 35(4): 52-60,86.
[5] 吴迪, 熊焱. 基于试验的斜交网格-核心筒结构概率地震易损性分析[J]. 工程力学, 2018, 35(11): 155-161,171.
[6] 梅真, 郭子雄, 高毅超. 基于模型结构振动台试验的概率密度演化方法验证[J]. 工程力学, 2017, 34(3): 54-61.
[7] 颜学渊, 祁皑, 毛会敏, 张超, 徐小勇. 近场地震作用下巨-子隔震结构振动台试验[J]. 工程力学, 2017, 34(11): 109-115,144.
[8] 郑山锁, 石磊, 张晓辉, 郑捷, 王晓飞, 左英. 酸性大气环境下锈蚀钢框架结构振动台试验研究[J]. 工程力学, 2017, 34(11): 77-88,108.
[9] 李祥秀, 谭平, 刘良坤, 张颖, 周福霖, 李小军. 巨-子结构控制体系振动台试验与有限元模型对比分析[J]. 工程力学, 2016, 33(9): 76-84.
[10] 徐艳, 王瑞龙, 李建中, 嵇冬冰. 弹塑性钢阻尼器对中等跨径斜拉桥横桥向减震效果的振动台试验研究[J]. 工程力学, 2016, 33(8): 101-109.
[11] 张鑫磊, 王志华, 许振巍, 孙晋晶. 土体液化大位移条件下群桩动力反应振动台模型试验[J]. 工程力学, 2016, 33(5): 150-156.
[12] 孙利民, 谢文. 超大跨斜拉桥多点振动台试验研究[J]. 工程力学, 2016, 33(11): 38-48.
[13] 胡凯, 蒋瓅, 瞿革, 吕西林, 王鹏, 杨梓. 钢筋混凝土结构连续倒塌机制研究[J]. 工程力学, 2015, 32(增刊): 83-90.
[14] 龚顺明, 周颖, 吕西林. 带黏弹性阻尼器结构振动台试验数值模拟[J]. 工程力学, 2015, 32(增刊): 226-232.
[15] 许卫晓,孙景江,杜轲,杨伟松. 阶梯墙框架结构体系的抗震性能分析[J]. 工程力学, 2015, 32(2): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日