工程力学 ›› 2019, Vol. 36 ›› Issue (1): 183-191,215.doi: 10.6052/j.issn.1000-4750.2017.11.0853

• 土木工程学科 • 上一篇    下一篇

改变框架-核心筒结构剪力调整策略对其抗震性能影响的研究

陆新征1, 顾栋炼1, 周建龙2,3, 包联进2,3, 钱鹏2,3, 卢啸4, 林元庆5   

  1. 1. 土木工程安全与耐久教育部重点试验室, 清华大学土木工程系, 北京 100084;
    2. 华东建筑设计研究院总院, 上海 200002;
    3. 上海超高层建筑设计工程技术研究中心, 上海 200002;
    4. 北京交通大学土木建筑工程学院, 北京 100044;
    5. 中国核电工程有限公司郑州分公司, 郑州 450052
  • 收稿日期:2017-11-13 修回日期:2018-08-03 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 陆新征(1978-),男,安徽人,教授,博士,主要从事结构非线性仿真研究(E-mail:luxz@tsinghua.edu.cn). E-mail:luxz@tsinghua.edu.cn
  • 作者简介:顾栋炼(1993-),男,江苏人,博士生,主要从事高层结构抗震研究(E-mail:gdl16@mails.tsinghua.edu.cn);周建龙(1965-),男,江苏人,教授级高工,学士,主要从事超高层结构的设计与相关研究(E-mail:zjl0290@ecadi.com);包联进(1971-),男,浙江人,教授级高工,硕士,主要从事超高层结构的设计与相关研究(E-mail:blj0068@ecadi.com);钱鹏(1980-),男,江苏人,高工,博士,主要从事超高层结构的设计与相关研究(E-mail:qph1254@ecadi.com);卢啸(1986-),男,湖南人,副教授,博士,主要从事高层抗震研究(E-mail:xiaolu@bjtu.edu.cn);林元庆(1974-),男,福建人,教授级高工,主要从事结构分析、设计及施工一体化技术研究及应用(E-mail:13526593105@126.com).
  • 基金资助:
    国家重点研发计划项目(2017YFC0702902);国家自然科学基金项目(51778341)

INFLUENCE OF CHANGING SHEAR ADJUSTMENT STRATEGY ON ASEISMIC PERFORMANCE OF FRAME-CORE TUBE STRUCTURE

LU Xin-zheng1, GU Dong-lian1, ZHOU Jian-long2,3, BAO Lian-jin2,3, QIAN Peng2,3, LU Xiao4, LIN Yuan-qing5   

  1. 1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    2. East China Architectural Design & Research Institute, Shanghai 200002, China;
    3. Shanghai Engineering Research Center of Super High-Rise Building Design, Shanghai 200002, China;
    4. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    5. China Nuclear Power Engineering Co., Ltd., Zhengzhou Branch, Zhengzhou 450052, China
  • Received:2017-11-13 Revised:2018-08-03 Online:2019-01-29 Published:2019-01-10

摘要: 框架-核心筒体系是超高层结构的常用结构体系之一。我国规范对框架-核心筒结构设计时的框架剪力做了相关的调整规定,但其在超高层结构中的适用性有待进一步研究。该文对比了中美规范的相关规定,并以一实际超高层建筑为例,改变其剪力调整策略得到新设计方案。并建立新、旧两方案的精细有限元模型,进行了大震弹塑性分析和特大震抗倒塌能力分析。分析结果表明:改变剪力调整策略的新模型设计难度降低,抗大震性能与满足中国规范的原模型相当,且其抗特大震倒塌能力更优。研究结果可以为超高层框架-核心筒结构的设计提供参考。

关键词: 超高层建筑, 框架-核心筒结构, 剪力调整, 地震, 倒塌

Abstract: The frame-core-tube structural system is one of the common structural systems used in supertall buildings. While a shear adjustment regulation for the frame of a frame-core tube structure has been specified in related Chinese codes, its applicability in supertall buildings needs to be further studied. Similar regulations in the codes of China and the United States are compared in this work. Furthermore, based on an actual supertall building, a new design is proposed by changing the shear adjustment strategy. Then the refined finite element (FE) models of both original design and new one are established. And both nonlinear time history analysis (THA) under the maximum considered earthquake (MCE) and earthquake-induced collapse analysis are performed for these two models. The results indicate that:compared with the original design, the new one, whose shear adjustment strategy is different, has a lower design difficulty, a similar aseismic performance under MCE, and a higher anti-collapse resistance. The results can provide a reference for the design of supertall frame-core tube structures.

Key words: supertall building, frame-core tube structure, shear adjustment, earthquake, collapse

中图分类号: 

  • TU973+.17
[1] The Council on Tall Buildings and Urban Habitat (CTBUH). The global tall building database of the CTBUH[DB]. http://www.skyscrapercenter.com/, Oct 2018.
[2] 卢啸. 超高巨柱-核心筒-伸臂结构地震灾变及抗震性能研究[D]. 北京:清华大学, 2013. Lu Xiao. Study on the collapse simulation and seismic performance of super tall mega column-core tube-outrigger buildings[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[3] 范重, 马万航, 赵红, 等. 超高层框架-核心筒结构体系技术经济性研究[J]. 施工技术, 2015, 44(20):1-10. Fan Zhong, Ma Wanhang, Zhao Hong, et al. Research on the structural and economical efficiency of super high-rise frame-core wall systems[J]. Construction Technology, 2015, 44(20):1-10. (in Chinese)
[4] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[5] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2010. JGJ 3-2010, Technical specification for concrete structures of tall building[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[6] 扶长生, 张小勇, 周立浪. 框架-核心筒结构体系及其地震剪力分担比[J]. 建筑结构, 2015, 45(4):1-8. Fu Changsheng, Zhang Xiaoyong, Zhou Lilang. Frame-core wall structural system and seismic shear distribution ratio[J]. Building Structure, 2015, 45(4):1-8. (in Chinese)
[7] 安东亚, 周德源, 李亚明. 框架-核心筒结构双重抗震防线研究综述[J]. 结构工程师, 2015, 31(1):191-199. An dongya, Zhou deyuan, Li yaming. Double earthquake fortification lines of frame-core tube structure:state-of-the-art[J]. Structural Engineers, 2015, 31(1):191-199. (in Chinese)
[8] 建质[2015] 67号, 超限高层建筑工程抗震设防专项审查技术要点[S]. 北京:中华人民共和国住房和城乡建设部, 2015. Jianzhi[2015] No.67, Technical points of special inspection for seismic fortification of overrun high-rise buildings[S]. Beijing:Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2015. (in Chinese)
[9] UBC 1997, Uniform building code[S]. Whittier CA:International Conference of Building Officials, 1997.
[10] IBC 2000, International building code[S]. Falls Church VA:International Code Council, Inc, 2000.
[11] IBC 2003, International building code[S]. Falls Church VA:International Code Council, Inc, 2003.
[12] ASCE 7-05, Minimum design loads for buildings and other structures[S]. Reston, Virginia:American Society of Civil Engineers, 2005.
[13] ASCE 7-10, Minimum design loads for buildings and other structures[S]. Reston, Virginia:American Society of Civil Engineers, 2010.
[14] IBC 2006, International building code[S]. Falls Church VA:International Code Council, Inc, 2006.
[15] IBC 2009, International building code[S]. Falls Church VA:International Code Council, Inc, 2009.
[16] IBC 2012, International building code[S]. Falls Church VA:International Code Council, Inc, 2012.
[17] 蔡益燕. 双重体系中框架的剪力分担率[J]. 建筑钢结构进展, 2004, 6(2):60-61. Cai Yiyan. The shear-bearing ratio of the moment frame in dual system[J]. Progress in Steel Building Structures, 2004, 6(2):60-61. (in Chinese)
[18] 胡庆昌. 钢筋混凝土框剪结构抗震设计若干问题的探讨[J]. 建筑结构, 2006, 36(6):84-86. Hu Qingchang. Some problems relating to seismic design of RC Frame-wall structure[J]. Building Structure, 2006, 36(6):84-86. (in Chinese)
[19] 曹倩, 汪洋, 赵宏. 复杂高层结构体系二道防线的探讨[J]. 建筑结构, 2011, 41(增刊1):331-335. Cao Qian, Wang Yang, Zhao Hong. Discussion on the dual defense system applied in structurally complicated high-rise building[J]. Building Structure, 2011, 41(Suppl 1):331-335. (in Chinese)
[20] 王焕诚. 考虑剪力分担率的钢框架组合墙结构安全性探析[J]. 建筑安全, 2009, 24(9):51-52. Wang Huancheng. Safety analysis of steel frame-composite wall structure considering shear distribution ratio[J]. Construction Safety, 2009, 24(9):51-52. (in Chinese)
[21] Lu X, Ye L P, Lu X Z, et al. An improved ground motion intensity measure for super high-rise buildings[J], Science China Technological Sciences, 2013, 56(6):1525-1533.
[22] Lu X, Lu X Z, Zhang W K, et al. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes[J]. Science China Technological Sciences, 2011, 54(10):2549-2560.
[23] Lu X Z, Lu X, Guan H, et al. Earthquake-induced collapse simulation of a supertall mega-braced frame-core tube building[J]. Journal of Constructional Steel Research, 2013, 82:59-71.
[24] Lu X, Lu X Z, Guan H, et al. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(5):705-723.
[25] Lu X, Lu X Z, Guan H, et al. Application of earthquake -induced collapse analysis in design optimization of a supertall building[J]. Structural Design of Tall & Special Buildings, 2016, 25(17):926-946.
[26] 陆新征, 蒋庆, 缪志伟, 等. 建筑抗震弹塑性分析[M]. 北京:中国建筑工业出版社, 2015. Lu Xinzheng, Jiang Qing, Miao Zhiwei, et al. Elasto-plastic analysis of buildings against earthquake[M]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[27] GB 50009-2012, 建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB 50009-2012, Load code for the design of building structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
[28] FEMA P695, Quantification of building seismic performance factors[R]. Washington, DC:Federal Emergency Management Agency, 2009.
[29] 施炜, 叶列平, 陆新征, 等. 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28(03):41-48. Shi Wei, Ye Lieping, Lu Xinzheng, et al. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28(03):41-48. (in Chinese)
[30] 陆新征, 叶列平. 基于IDA分析的结构抗地震倒塌能力研究[J]. 工程抗震与加固改造, 2010, 32(1):13-18. Lu Xinzheng, Ye Lieping. Study on the seismic collapse resistance of structural system[J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1):13-18. (in Chinese)
[31] 吕西林, 苏宁粉, 周颖. 复杂高层结构基于增量动力分析法的地震易损性分析[J]. 地震工程与工程振动, 2012, 32(5):19-25. Lu Xilin, Su Ningfen, Zhou Ying. IDA-based seismic fragility analysis of a complex high-rise structure[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(5):19-25. (in Chinese)
[32] 周颖, 吕西林, 卜一. 增量动力分析法在高层混合结构性能评估中的应用[J]. 同济大学学报(自然科学版), 2010, 38(2):183-187. Zhou Ying, Lu Xilin, Bo Yi. Application of incremental dynamic analysis to seismic evaluation of hybrid structure[J]. Journal of Tongji University (Natural Science), 2010, 38(2):183-187. (in Chinese)
[33] Alwaeli W, Mwafy A, Pilakoutas K, et al. A methodology for defining seismic scenario-structure-based limit state criteria for RC high-rise wall buildings using net drift[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(8):1325-1344.
[34] Harrington C C, Liel A B. Collapse assessment of moment frame buildings, considering vertical ground shaking[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(15):2475-2493.
[35] 白久林, 欧进萍. 基于IDA方法的钢筋混凝土结构失效模式优化[J]. 工程力学, 2011, 28(增刊2):198-203. Bai Jiulin, Ou Jinping. Optimization of failure modes for reinforced concrete buildings based on IDA method[J]. Engineering Mechanics, 2011, 28(Suppl Ⅱ):198-203. (in Chinese)
[1] 潘超, 张瑞甫, 王超, 逯静洲. 单自由度混联II型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1): 129-137,145.
[2] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[3] 王丕光, 赵密, 李会芳, 杜修力. 一种高精度圆柱形人工边界条件:水-柱体相互作用问题[J]. 工程力学, 2019, 36(1): 88-95.
[4] 李振宝, 崔燕伟, 宋坤, 马华, 唐贞云. 双向受力下钢筋混凝土框架节点抗剪承载力计算方法[J]. 工程力学, 2019, 36(1): 175-182.
[5] 谭辉, 刘晶波, 王东洋, 宝鑫, 李述涛. 地下结构地震反应分析中人工边界条件和地震波动输入方法对比研究[J]. 工程力学, 2018, 35(S1): 212-216,222.
[6] 国巍, 李君龙, 刘汉云. 强地震下高速铁路桥上行车精细化模拟及行车安全性分析[J]. 工程力学, 2018, 35(S1): 259-264,277.
[7] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(S1): 300-306.
[8] 张永亮, 冯鹏飞, 陈兴冲, 宁贵霞, 丁明波. 基于静-动力分析相结合方法的桥梁桩基础地震反应分析及抗震性能评价[J]. 工程力学, 2018, 35(S1): 325-329,343.
[9] 郑福聪, 郭宗明, 张耀庭. 近场脉冲型地震作用下PC框架结构抗震性能分析[J]. 工程力学, 2018, 35(S1): 330-337.
[10] 翟金金, 董胜. 夏威夷ALEUTIAN海啸的NEOWAVES数值模拟[J]. 工程力学, 2018, 35(S1): 359-364.
[11] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[12] 支旭东, 张英楠, 范峰, 沈世钊. 单层球面网壳的多重地震效应研究[J]. 工程力学, 2018, 35(9): 107-113,125.
[13] 杨参天, 解琳琳, 李爱群, 曾德民, 刘立德. 适用于高层隔震结构的地震动强度指标研究[J]. 工程力学, 2018, 35(8): 21-29.
[14] 刘亭亭, 于晓辉, 吕大刚. 地震动多元强度参数主成分与结构损伤的相关性分析[J]. 工程力学, 2018, 35(8): 122-129,137.
[15] 贾宏宇, 杜修力, 李兰平, 黄胜前, 郑史雄. 地震作用下梁体碰撞间隙宽度的概率分析方法[J]. 工程力学, 2018, 35(8): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日