工程力学 ›› 2019, Vol. 36 ›› Issue (1): 175-182.doi: 10.6052/j.issn.1000-4750.2017.11.0851

• 土木工程学科 • 上一篇    下一篇

双向受力下钢筋混凝土框架节点抗剪承载力计算方法

李振宝1, 崔燕伟1,2, 宋坤3, 马华1, 唐贞云1   

  1. 1. 北京工业大学工程抗震与结构诊治北京市重点实验室, 北京 100124;
    2. 河南城建学院土木与交通工程学院, 平顶山 467036;
    3. 燕山大学建筑工程与力学学院, 秦皇岛 066004
  • 收稿日期:2017-11-10 修回日期:2018-05-23 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 崔燕伟(1978-),男,河南人,讲师,博士生,从事工程结构抗震研究(E-mail:cuiyanwei666@163.com). E-mail:cuiyanwei666@163.com
  • 作者简介:李振宝(1962-),男,山东人,教授,工学博士,博导,从事工程结构抗震研究(E-mail:lizb@bjut.edu);宋坤(1980-),女,黑龙江人,讲师,博士,从事工程结构抗震研究(E-mail:songkun_2002@163.com);马华(1962-),女,山东人,副研究员,博士,从事工程结构抗震研究(E-mail:mahua@bjut.edu.cn);唐贞云(1983-),男,重庆人,副研究员,博士,从事结构试验技术研究(E-mail:tzy@bjut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51508493);河北省博士后科研项目择优资助项目(B2016005003)

SHEAR CAPACITY CALCULATION METHOD OF PANEL ZONE IN REINFORCED CONCRETE FRAME UNDER BIDIRECTIONAL LOADING

LI Zheng-bao1, CUI Yan-wei1,2, SONG Kun3, MA Hua1, TANG Zhen-yun1   

  1. 1. Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing, 100124, China;
    2. School of Civil and Transportation Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China;
    3. School of Architecture Engineering and Mechanics, Yanshan University, Qinhuangdao, 066004, China
  • Received:2017-11-10 Revised:2018-05-23 Online:2019-01-29 Published:2019-01-10

摘要: 《建筑抗震设计规范》(GB 50011-2010)规定框架结构设计应保证其在两个方向分别满足抗震要求。但地震作用是多维的、随机的,框架节点可能在两个方向同时受力,使其抗震能力相比于单向地震作用可能会降低。目前对钢筋混凝土框架节点在两个方向同时受力时的抗剪承载力计算未见详尽报道。该文分析了钢筋混凝土框架节点在双向同时受力时的抗剪机理,双向受力下,节点内作用合成剪力,节点端部形成斜向受压区,节点内形成不同于单向受力下的斜向斜压杆。基于拉压杆模型建立了双向受力下框架节点的抗剪承载力计算方法,其计算结果与已有试验结果吻合良好。

关键词: 节点, 多维地震作用, 双向受力, 抗剪强度, 拉压杆模型

Abstract: According to the provisions of the Chinese Code for Seismic Design of Buildings (GB 50011-2010), the anti-seismic capability of a frame structure in two horizontal directions are designed respectively. However, earthquake action is multi-dimensional and random, which will make a panel zone in a frame structure be loaded by bidirectional actions at the same time. Thusly, its anti-seismic capability may be lower than the designed capability based on a unidirectional earthquake action. So far, the detailed calculation methods of shear capability for a panel zone in a reinforced concrete (RC) frame subjected to bidirectional loading have not been reported. In this work, the shear mechanism of a panel zone in a RC frame under bidirectional loading was analyzed. It demonstrated that a synthetic shear force is imposed on a panel zone, the oblique compression zone comes into being at the end of a panel zone, and the diagonal strut is formed in a panel zone, which is different from the shear mechanism under unidirectional loading. A shear capacity calculation model was established based on the strut and tie model, and the predicted values by this work are in a good agreement with the reported experimental results.

Key words: panel zone, multi-dimensional earthquake excitation, bidirectional loading, shear strength, strut and tie model

中图分类号: 

  • TU375.4
[1] Kitayama K, Asami S, Otani S, et al. Behavior of reinforced concrete three-dimensional beam-column connections with slabs[R]. Japan Concrete Institute (JCI). Annual Japan Concrete Institute (JCI) Meeting, Tokyo, Japan, 1986:649-652.
[2] Fujii S, Morita S. Behavior of exterior reinforced concrete beam-column-slab sub-assemblages under bi-directional loading[R]. Pacific Conf. on Earthquake Engineering, New Zealand, New Zealand National Society for Earthquake Engineering. Wellington, New Zealand, 1987:339-350.
[3] Li L M, Mander J B, Dhakal R P. Bidirectional cyclic loading experiment on a 3D beam-column joint designed for damage avoidance[J]. Journal of Structural Engineering, ASCE, 2008, 134(11):1733-1742.
[4] Fan J, Li Q, Nie J, et al. Experimental study on the seismic performance of 3D joints between concrete-filled square steel tubular columns and composite beams[J]. Journal of Structural Engineering, ASCE, 2014, 140(12):0401409-1-0401409-13.
[5] Burguieres S T, Jirsa J O. The behavior of beam-column joints under bidirectional load reversals[C]. Bulletin D'Information, AICAP-CEB Symposium on Structural Concrete Under Seismic Actions, RMCE, 1979(132):221-228.
[6] 张连德. 钢筋砼空间框架节点抗震性能的研究[J]. 建筑结构学报, 1987, 8(2):1-9. Zhang Liande. A study of earthquake resisting behavior of reinforced concrete space frame joints[J]. Journal of Building Structures, 1987, 8(2):1-9. (in Chinese)
[7] 闫维明, 侯立群, 陈适才, 等. 双向荷载作用下空间夹心节点受力性能试验研究[J]. 工程力学, 2016, 33(5):211-219. Yan Weiming, Hou Liqun, Chen Shicai, et al. Experimental study on the mechanical behavior of 3D sandwich joints under bi-directional loading[J]. Engineering Mechanics, 2016, 33(5):211-219. (in Chinese)
[8] 王英俊, 梁兴文, 吴继伟. 纤维增强混凝土梁柱节点受剪承载力计算模型研究[J]. 工程力学, 2016, 33(3):77-86. Wang Yingjun, Liang Xingwen, Wu Jiwei. Calculation model of shear capacity of fiber-reinforced concrete beam-column joint[J]. Engineering Mechanics, 2016, 33(3):77-86. (in Chinese)
[9] Pan Z, Guner S, Vecchio F J. Modeling of interior beam-column joints for nonlinear analysis of reinforced concrete frames[J]. Engineering Structures, 2017(142):182-191.
[10] Kassem W. Strut-and-tie modelling for the analysis and design of RC beam-column joints[J]. Materials & Structures. 2016, 49(8):3459-3476.
[11] Paulay T, Park R, Priestley M J N. Reinforced concrete beam-column joints under seismic actions[J]. ACI Journal, 1978, 75(11):585-593.
[12] Paulay T, Park R. Joints in reinforced concrete frames designed for earthquake resistance[R]. Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 1984, 6:33-34.
[13] Schlaich J, Schäfer K. Design and detailing of structural concrete using strut-and-tie models[J]. The Structural Engineering, 1991, 69(6):113-125.
[14] Vecchio F J, Collings M P. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. ACI Structural Journal, 1986, 83(2):219-231.
[15] Hwang S J, Lee H J. Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance[J]. ACI Structural Journal, 1999, 96(5):846-857.
[16] Hwang S J, Lee H J. Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance[J]. ACI Structural Journal, 2000, 97(1):35-44.
[17] Beckingsale C W. Post elastic behaviour of reinforced concrete beam-column joints[D]. Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 1980, 8:360-368.
[18] Schäfer K. Strut-and-tie models for the design of structural concrete[R]. Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, 1996:140-141.
[19] CEB-FIP model code 1990[S]. Thomas Telford services Ltd, Thomas Telford House, Comité Euro-International du Béton as Bulletins d'Information, 1993:216-217.
[20] Hwang S J, Lee H J. Strength prediction for discontinuity regions by softened strut-and-tie model[J]. Journal of Structural Engineering, ASCE, 2002, 128(12):1519-1526.
[21] Hsu T T C. Toward a unified nomenclature for reinforced concrete theory[J]. Journal of Structural Engineering, ASCE, 1996, 122(3):275-283.
[22] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of reinforced concrete silos[S]. Beijing:China Architecture Industry Press, 2010. (in Chinese)
[23] 陈永春, 高红旗, 马颖军, 等. 双向反复荷载下钢筋砼空间框架梁柱节点受剪承载力及梁筋粘结锚固性能的试验研究[J]. 建筑科学, 1995(2):13-20. Chen Yongchun, Gao Hongqi, Ma Yinjun, et al. Study on shear capacity and bond behavior of longitudinal reinforcement of RC space frame interior beam-column joints under biaxial cyclic loading[J]. Building Science, 1995(2):13-20. (in Chinese)
[24] 崔建宇, 车轶, 孙建刚, 等. 高层钢筋混凝土框架底层角节点抗震性能[J]. 重庆大学学报, 2014, 37(2):98-105. Cui Janyu, Che Yi, Sun Jiangang, et al. Seismic performance of first floor corner joints of high-rise reinforced concrete frame structure[J]. Journal of Chongqing University, 2014, 37(2):98-105. (in Chinese)
[1] 徐强, 郑山锁, 商校瑀. 近海大气环境作用下钢框架节点时变地震损伤研究[J]. 工程力学, 2019, 36(1): 61-69.
[2] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[3] 杨风利. 考虑螺栓连接滑移影响的输电铁塔塔身结构分析[J]. 工程力学, 2018, 35(S1): 193-199.
[4] 耿淑伟, 余有龙, 梅钰洁, 赵曾, 殷参, 赖小明. 基于光纤光栅传感的螺纹钻杆复合载荷多节点检测技术[J]. 工程力学, 2018, 35(8): 230-235.
[5] 马辉, 李三只, 李哲, 王振山, 梁炯丰. 型钢再生混凝土柱-钢梁组合框架节点抗剪承载力研究[J]. 工程力学, 2018, 35(7): 176-186.
[6] 侯和涛, 朱文灿, 曲哲, 崔士起. 屈曲约束支撑钢筋混凝土框架结构干式柔性梁柱节点的试验研究[J]. 工程力学, 2018, 35(6): 151-161.
[7] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(6): 88-96.
[8] 刘希月, 王元清, 石永久, 谭清华. 高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J]. 工程力学, 2018, 35(5): 54-64.
[9] 王妮, 陈宗平, 陈宇良. 型钢混凝土L形柱空间角节点抗震性能分析[J]. 工程力学, 2018, 35(5): 180-192.
[10] 李灿军, 周臻, 谢钦. 摩擦耗能型SMA杆自复位梁柱节点滞回性能分析[J]. 工程力学, 2018, 35(4): 115-123.
[11] 崔瑶, 高晓玉, 李梦玥. 平板支座抗震性能的有限元研究[J]. 工程力学, 2018, 35(2): 169-179.
[12] 牟犇, 王玲玲, 张春巍, 林旭川. 考虑楼板影响的外环板式梁柱节点抗震性能:试验研究[J]. 工程力学, 2018, 35(2): 160-168,213.
[13] 王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12): 151-163.
[14] 曹胜涛, 李志山, 刘付钧. 一种非比例振型阻尼模型及在大规模非线性分析中的应用[J]. 工程力学, 2018, 35(11): 162-171.
[15] 王磊, 班慧勇, 石永久, 王元清. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学, 2018, 35(11): 68-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248 -256 .
[2] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1): 70 -79,87 .
[3] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[4] 高彦芳, 陈勉, 林伯韬, 金衍. 多相非饱和多重孔隙介质的有效应力定律[J]. 工程力学, 2019, 36(1): 32 -43 .
[5] 于潇, 陈力, 方秦. 一种量测松散介质对应力波衰减效应的实验方法及其在珊瑚砂中的应用[J]. 工程力学, 2019, 36(1): 44 -52,69 .
[6] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 -14,43 .
[7] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15 -22 .
[8] 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计:复合Hermite模型[J]. 工程力学, 2019, 36(1): 23 -31 .
[9] 白鲁帅, 李钢, 靳永强, 李宏男. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53 -60 .
[10] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96 -103,118 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日