工程力学 ›› 2019, Vol. 36 ›› Issue (1): 155-164.doi: 10.6052/j.issn.1000-4750.2017.11.0822

• 土木工程学科 • 上一篇    下一篇

考虑行人随机性的人行桥人致横向振动稳定性分析

贾布裕, 颜全胜, 余晓琳, 杨铮   

  1. 华南理工大学土木与交通学院, 广东 510640
  • 收稿日期:2017-11-05 修回日期:2018-03-20 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 余晓琳(1978-),女,湖北人,副教授,博士,主要从事桥梁振动和安全评估(E-mail:xlyul@scut.edu.cn). E-mail:xlyul@scut.edu.cn
  • 作者简介:贾布裕(1983-),男,浙江人,博士后副研究员,博士,主要从事桥梁随机振动研究(E-mail:ctjby@scut.edu.cn);颜全胜(1968-),男,江西人,教授,博士,博导,主要从事大跨度桥梁非线性及稳定研究(E-mail:cvqshyan@scut.edu.cn);杨铮(1990-),男,广东人,博士生,主要从事拉索非线性随机振动研究(E-mail:y.z09@mail.scut.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51478193,51608207);桥梁工程结构动力学国家重点实验室基金项目(201507);中央高校基本科研业务费专项资金项目(2015ZM114);福建省交通运输科技基金项目(201527)

STABILITY ANALYSIS ON PEDESTRIAN-INDUCED LATERAL VIBRATION OF FOOTBRIDGES CONSIDERING PEDESTRIAN STOCHASTIC EXCITATION

JIA Bu-yu, YAN Quan-sheng, YU Xiao-lin, YANG Zheng   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangdong, Guangzhou 510640, China
  • Received:2017-11-05 Revised:2018-03-20 Online:2019-01-29 Published:2019-01-10

摘要: 2000年英国千禧桥大幅横向振动事件的发生,揭示了在人行桥的人致横向振动中,存在着振动发散不稳定现象:人群数目的小额增加会导致有限振幅的桥梁振动突变为大幅桥梁振动。这个现象已被证实为是由人-桥的相互作用引起,但其中机理仍未得到明确的解释。众多学者包括目前已有的规范所提出的模型,大部分基于确定性的思路或者单个试验观测结果,忽略了行人荷载中明显存在的随机性。行人荷载实质是一个复杂的窄带随机过程,包含行人不同步伐间的作用随机性以及不同行人之间的作用随机性,这些随机性导致的行人荷载将明显不同于按确定性考虑的情况。因此,该文提出了考虑人桥相互作用以及行人横向荷载随机性的非线性随机模型,将行人横向荷载划分为两部分:与桥梁振动无关的横向荷载以及与桥梁振动(振幅)相关的荷载,并考虑了单个行人不同步伐间的荷载随机性造成的激励过程窄带性。基于随机平均法推导得到的Itô方程,进行了随机P-分叉分析和随机D-分叉分析,并以此得到人行桥横向振动发散失稳临界状态。最后利用所提方法对伦敦千禧桥北边跨进行了算例分析,验证了该文所提方法的有效性,并得到了一些有益的结论。

关键词: 人行桥, 人致横向振动, 随机平均法, Itô方程, 稳定

Abstract: The infamous incident of large lateral vibration on the London Millennium Bridge in 2000 reveals that divergence of instability exists in pedestrian-induced vibration:a small increase in the number of pedestrians will cause the amplitude of vibration of the footbridge to become divergent. Such divergence of an instability phenomenon has been proven to be caused by the interaction between the pedestrian and the footbridge, although the mechanisms still have not been clearly explored. Most existing models are based on deterministic methods or results of a single test, ignoring the obvious randomness in the pedestrian load. In fact, pedestrian load is a complex stochastic process characteristized by narrow-band, including the large intra-subject and inter-subject randomness, which cause the real pedestrian load to be significantly different from that of a deterministic case. A nonlinear stochastic model for footbridges considering the pedestrian-bridge interaction and the randomness among the pedestrian lateral load was proposed. The pedestrian lateral load was considered as a narrow-band excitation process caused by the intra-subject variability, and was divided into a static load independent of footbridge vibration and vibration amplitude-dependent load. Based on the Itô equations derived by the stochastic averaging method, the stochastic P-bifurcation and stochastic D-bifurcation were analyzed to gain the critical condition for triggering a large lateral vibration of footbridge. Finally, through the case study of the northern span of the London Millennium Bridge, the availability of the proposed method was confirmed and meaningful conclusions were obtained.

Key words: footbridge, pedestrian-induced lateral vibration, stochastic averaging method, Itô equations, stability

中图分类号: 

  • TU311
[1] Dallard P, Fitzpatrick T, Flint A, et al. The London Millennium Footbridge[J]. Structural Engineer, 2001, 79(171):17-33.
[2] 陈政清, 刘光栋. 人行桥的人致振动理论与动力设计[J]. 工程力学, 2009, 26(增刊2):148-159. Chen Zhengqing, Liu Guangdong. Pedestrian-induced vibration theory and dynamic design of footbridges[J]. Engineering Mechanics, 2009, 26(Suppl 2):148-159. (in Chinese)
[3] Fujino Y, Pacheco B M, Nakamura S-I, et al. Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge[J]. Earthquake Engineering & Structural Dynamics, 1993, 22(9):741-758.
[4] Fujino Y, Siringoringo D M. A conceptual review of pedestrian-induced lateral vibration and crowd synchronization problem on footbridges[J]. Journal of Bridge Engineering, 2016, 21(8):C4015001-1-C4015001-12.
[5] Nakamura S. Model for lateral excitation of footbridges by synchronous walking[J]. Journal of Structural Engineering, 2004, 130(1):32-37.
[6] Piccardo G, Tubino F. Parametric resonance of flexible footbridges under crowd-induced lateral excitation[J]. Journal of Sound & Vibration, 2008, 311(1-2):353-371.
[7] Ingólfsson E T, Georgakis C T. A stochastic load model for pedestrian-induced lateral forces on footbridges[J]. Engineering Structures, 2011, 33(12):3454-3470.
[8] Ingólfsson E T, Georgakis C T, Ricciardelli F, et al. Experimental identification of pedestrian-induced lateral forces on footbridges[J]. Journal of Sound & Vibration, 2012, 330(6):1265-1284.
[9] Roberts T M. Lateral pedestrian excitation of footbridges[J]. Journal of Bridge Engineering, 2005, 10(1):107-112.
[10] Newland D. Pedestrian excitation of bridges[J]. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2004, 218(5):477-492.
[11] Erlicher S, Trovato A, Argoul P. A modified hybrid Van der Pol/Rayleigh model for the lateral pedestrian force on a periodically moving floor[J]. Mechanical Systems & Signal Processing, 2013, 41(1):485-501.
[12] Kumar P, Kumar A, Erlicher S. A nonlinear oscillator model to generate lateral walking force on a rigid flat surface[J]. International Journal of Structural Stability & Dynamics, 2017, 18(2):1850020-1-1850020-31.
[13] Macdonald J H G. Lateral excitation of bridges by balancing pedestrians[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 2009, 465(2104):1055-1073.
[14] Bocian M, Macdonald J H G, Burn J F. Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures[J]. Journal of Sound & Vibration, 2012, 331(16):3914-3929.
[15] Carroll S P, Owen J S, Hussein M F M. Reproduction of lateral ground reaction forces from visual marker data and analysis of balance response while walking on a laterally oscillating deck[J]. Engineering Structures, 2013, 49(2):1034-1047.
[16] Carroll S P, Owen J S, Hussein M F M. Experimental identification of the lateral human-structure interaction mechanism and assessment of the inverted-pendulum biomechanical model[J]. Journal of Sound & Vibration, 2014, 333(22):5865-5884.
[17] Ricciardelli F, Pizzimenti A D. Lateral walking-induced forces on footbridges[J]. Journal of Bridge Engineering, 2007, 12(6):677-688.
[18] Bocian M, Macdonald J H G, Burn J F, et al. Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment[J]. Engineering Structures, 2015, 105(2015):62-76.
[19] Brownjohn J M W, Pavic A, Omenzetter P. A spectral density approach for modelling continuous vertical forces on pedestrian structures due to walking[J]. Canadian Journal of Civil Engineering, 2004, 31(1):65-77.
[20] Živanović S, Pavić A, Reynolds P. Probability-based prediction of multi-mode vibration response to walking excitation[J]. Engineering Structures, 2007, 29(6):942-954.
[21] 李泉, 樊健生, 聂建国. 双向行走激励条件下人行桥的随机振动问题研究[J]. 工程力学, 2010, 27(7):74-81. Li Quan, Fan Jiansheng, Nie Jianguo. Random vibration of footbridge generated by crowds' two-way walking[J]. Engineering Mechanics, 2010, 27(7):74-81. (in Chinese)
[22] 朱前坤, 李宏男, 杜永峰, 等. 不同行走步速下人行桥振动舒适度定量化评估[J]. 工程力学, 2016, 33(10):97-104. Zhu Qiankun, Li Hongnan, Du Yongfeng, et al. Quantitative evaluation of vibration serviceability of pedestrian brigde under different walking speed[J]. Engineering Mechanics, 2016, 33(10):97-104. (in Chinese)
[23] Racic V, Brownjohn J. Mathematical modelling of random narrow band lateral excitation of footbridges due to pedestrians walking[J]. Computers & Structures, 2011, 90/91(1):116-130.
[24] Racic V, Brownjohn J M W. Stochastic model of near-periodic vertical loads due to humans walking[J]. Advanced Engineering Informatics, 2011, 25(2):259-275.
[25] Fernando Jimenez-Alonso J, Saez A, Caetano E, et al. Vertical crowd-structure interaction model to analyze the change of the modal properties of a footbridge[J]. Journal Of Bridge Engineering, 2016, 21(8):C4015004-1-C4015004-19.
[26] Venuti F, Racic V, Corbetta A. Modelling framework for dynamic interaction between multiple pedestrians and vertical vibrations of footbridges[J]. Journal of Sound & Vibration, 2016, 379(2016):245-263.
[27] 李慧乐, 夏禾. 基于车桥耦合随机振动分析的钢桥疲劳可靠度评估[J]. 工程力学, 2017, 34(2):69-77. Li Huile, Xia He. Fatigue reliability evaluation of steel bridges based on coupling random vibration analysis of train and bridge[J]. Engineering Mechanics, 2017, 34(2):69-77. (in Chinese)
[28] Ricciardelli F, Mafrici M, Ingólfsson E T. Lateral pedestrian-induced vibrations of footbridges:characteristics of walking forces[J]. Journal of Bridge Engineering, 2014, 19(9):1265-1266.
[29] Ricciardelli F, Demartino C. Design of footbridges against pedestrian-induced vibrations[J]. Journal Of Bridge Engineering, 2016, 21(8):C4015003-1-C4015003-13.
[30] 袁旭斌. 人行桥人致振动特性研究[D]. 上海:同济大学, 2006. Yuan Xubin. Research on pedestrian-induced vibration of footbridge[D]. Shanghai:Tongji University, 2006. (in Chinese)
[31] Venuti F, Bruno L. Crowd-structure interaction in lively footbridges under synchronous lateral excitation:A literature review[J]. Physics of Life Reviews, 2009, 6(3):176-206.
[32] Bruno L, Venuti F. Crowd-structure interaction in footbridges:Modelling, application to a real case-study and sensitivity analyses[J]. Journal of Sound & Vibration, 2009, 323(1/2):475-493.
[33] Shinozuka M, Deodatis G. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Reviews, 1991, 44(4):191-204.
[34] Jia B, Yu X, Yan Q, et al. Nonlinear stochastic analysis for lateral vibration of footbridge under pedestrian narrowband excitation[J]. Mathematical Problems in Engineering, 2017, 2017(22):1-12.
[35] 朱位秋. 随机振动[M]. 北京:科学出版社, 1992. Zhu Weiqiu. Random vibration[M]. Beijing:Science Press, 1992. (in Chinese)
[36] Rong H, Wang X, Xu W, et al. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation[J]. Physical Review E, 2009, 80(2):026604-1-026604-8.
[37] 冯长水. 窄带随机激励下时滞反馈控制的强非线性系统随机动力学研究[D]. 杭州:浙江大学, 2008. Feng Changshui. Stochastic dynamics of strongly nonlinear systems with time-delayed feedback control under narrow-band random excitations[D]. Hangzhou:Zhejiang University, 2008. (in Chinese)
[38] 杨志安, 赵开元. 有界窄带激励下微梁系统主共振[J]. 工程力学, 2017, 34(增刊1):19-25. Yang Zhian, Zhao Kaiyuan. Primary response of micro-beam system subjected to narrow-band random excitation[J]. Engineering Mechanics, 2017, 34(Suppl 1):19-25. (in Chinese)
[39] Rong H, Xu W, Wang X, et al. Principal response of van der pol-duffing oscillator under combined deterministic and random parametric excitation[J]. Applied Mathematics and Mechanics, 2002, 23(3):299-310.
[1] 汤宏伟, 钟宏志. 考虑杆件初弯曲的网壳弹塑性稳定性的弱形式求积元分析[J]. 工程力学, 2019, 36(1): 165-174.
[2] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[3] 唐亚军, 童根树, 张磊. 设有单根拉条滑动座连接檩条的稳定性分析[J]. 工程力学, 2018, 35(7): 47-54.
[4] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 118-124.
[5] 刘兴旺, 童根树, 李瑛, 胡焕, 陈东. 深基坑组合型钢支撑梁稳定性分析[J]. 工程力学, 2018, 35(4): 200-207,218.
[6] 唐贞云, 郭珺, 洪越, 李易, 李振宝. 多自由度实时子结构试验系统稳定性分析方法[J]. 工程力学, 2018, 35(3): 22-29.
[7] 李鹏飞, 朱其志, 顾水涛, 倪涛. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41-48.
[8] 樊鹏玄, 陈务军, 赵兵. 盘绕式伸展臂收纳过程理论分析与数值模拟[J]. 工程力学, 2018, 35(3): 249-256.
[9] 张爱林, 郭志鹏, 刘学春, 李超. 装配式建筑双槽钢组合截面梁整体稳定系数研究[J]. 工程力学, 2018, 35(2): 67-75.
[10] 杨璐, 宁克洋, 班慧勇, 赵梦晗. 不锈钢焊接箱形截面压弯构件弯曲屈曲试验研究[J]. 工程力学, 2018, 35(12): 143-150.
[11] 文颖, 陶蕤. 基于加速度泰勒展开的动力学方程显式积分方法[J]. 工程力学, 2018, 35(11): 26-34.
[12] 潘兆东, 谭平, 周福霖. 基于保性能自适应RBF神经网络的MR半主动非线性鲁棒分散控制[J]. 工程力学, 2018, 35(10): 47-55.
[13] 潘天林, 吴斌. 基于桁架单元的能量一致积分方法[J]. 工程力学, 2018, 35(10): 1-9,36.
[14] 郑颖人, 王乐, 孔亮, 阿比尔的. 钢材破坏条件与极限分析法在钢结构中应用探索[J]. 工程力学, 2018, 35(1): 55-65.
[15] 刘欣欣, 唐春安, 龚斌, 于庆磊. 基于DDD离心加载法的黑山铁矿西帮边坡稳定性研究[J]. 工程力学, 2018, 35(1): 191-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248 -256 .
[2] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1): 70 -79,87 .
[3] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[4] 高彦芳, 陈勉, 林伯韬, 金衍. 多相非饱和多重孔隙介质的有效应力定律[J]. 工程力学, 2019, 36(1): 32 -43 .
[5] 于潇, 陈力, 方秦. 一种量测松散介质对应力波衰减效应的实验方法及其在珊瑚砂中的应用[J]. 工程力学, 2019, 36(1): 44 -52,69 .
[6] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 -14,43 .
[7] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15 -22 .
[8] 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计:复合Hermite模型[J]. 工程力学, 2019, 36(1): 23 -31 .
[9] 白鲁帅, 李钢, 靳永强, 李宏男. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53 -60 .
[10] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96 -103,118 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日