工程力学 ›› 2019, Vol. 36 ›› Issue (1): 248-256.doi: 10.6052/j.issn.1000-4750.2017.11.0814

• 其他工程学科 • 上一篇    

平流层飞艇气动阻力的参数分析

李天娥1, 孙晓颖2, 武岳2, 王长国3   

  1. 1. 太原理工大学建筑与土木工程学院, 太原 030024;
    2. 哈尔滨工业大学结构工程灾变与控制教育部重点试验室, 哈尔滨 150090;
    3. 哈尔滨工业大学复合材料与结构研究所, 哈尔滨 150080
  • 收稿日期:2017-11-02 修回日期:2018-06-04 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 孙晓颖(1975-),女,黑龙江人,副教授,博士,博导,从事大跨度空间结构设计理论研究(E-mail:sxy_hit@163.com). E-mail:sxy_hit@163.com
  • 作者简介:李天娥(1987-),女,山西人,讲师,博士,从事大跨度空间结构设计理论研究(E-mail:woshitiane@126.com);武岳(1972-),男,黑龙江人,教授,博士,博导,从事大跨度空间结构设计理论研究(E-mail:wuyue_2000@163.com);王长国(1979-),男,辽宁人,教授,博士,博导,从事薄膜结构力学、大型薄膜结构稳定性研究(E-mail:wangcg@hit.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51678192,11572099);航空科学基金项目(2016ZA77001)

PARAMETER ANALYSIS OF AERODYNAMIC DRAG FORCE IN STRATOSPHERIC AIRSHIP

LI Tian-e1, SUN Xiao-ying2, WU Yue2, WANG Chang-guo3   

  1. 1. College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China;
    3. Center of Composite Material and Structure, Harbin Institute of Technology, Harbin 150080, China
  • Received:2017-11-02 Revised:2018-06-04 Online:2019-01-29 Published:2019-01-10

摘要: 为了研究环境参数及外形布局对平流层飞艇气动阻力的影响,在验证CFD数值模拟方法的基础上,从气动阻力包括压差阻力与摩擦阻力的角度探讨了风速、动力粘度系数、空气密度、Re数、长细比及尾翼对飞艇气动阻力的影响规律及机理。结果表明:气动阻力系数随风速与空气密度的增加而减小,随动力粘度系数的增加而增加;气动阻力系数随Re数减小的趋势,取决于摩擦阻力系数随Re数的减小趋势;随长细比的增加,摩擦阻力系数呈现增加趋势,但气动阻力系数呈现先减小后增加的趋势;尾翼对气动阻力系数的影响主要体现在压差阻力系数的改变。

关键词: 平流层飞艇, 气动阻力, CFD数值模拟, 参数分析, 环境参数, 外形布局

Abstract: To explore the influence of environmental parameters and shape layout on the aerodynamic drag force of a stratospheric airship, the parameters of wind velocity, dynamic viscosity coefficient, air density, Re, slenderness ratio and fins were studied based on the verified CFD numerical simulation method. And the influencing rule and mechanism of all the above parameters on aerodynamic drag forces were investigated by the constituent parts of aerodynamic drag forces that are differential pressure drag forces and frictional drag forces. The analytical results indicate that the aerodynamic drag force coefficient decreases as the increase of wind velocity and air density but increases as the increase of dynamic viscosity coefficient. The decreasing trend of the aerodynamic drag force coefficient as the Re depends on the decreasing trend of the frictional drag force coefficient. As the slenderness ratio increases, the frictional drag force coefficient appears an increase trend, but the aerodynamic drag force coefficient decreases at first and then increases. The effect of the fins on the aerodynamic drag force coefficient is mainly reflected in the change of the differential pressure drag force coefficient.

Key words: stratosphere airship, aerodynamic drag force, CFD numerical simulation, parameter analysis, environmental parameters, shape layout

中图分类号: 

  • V274
[1] Liao L and Pasternak I. Finite element analysis in novel aerostructure design[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, California, USA, AIAA, 2009.
[2] 孙晓颖, 李天娥, 陆正争, 等. 平流层飞艇的多目标优化与决策[J]. 工程力学, 2015, 32(6):243-250. Sun Xiaoying, Li Tiane, Lu Zhengzheng, et al. Multi-objective optimization and decision making of stratosphere airships[J]. Engineering Mechanics, 2015, 32(6):243-250. (in Chinese)
[3] 仇翯辰, 邱志平. 平流层飞艇充气柔性膜结构的区间不确定优化[J]. 工程力学, 2015, 32(4):234-243. Qiu Hechen, Qiu Zhiping. Interval uncertainty optimization of airship's air-supported flexible membrane structure[J]. Engineering Mechanics, 2015, 32(4):234-243. (in Chinese)
[4] 谢飞, 叶正寅. 驻点引射飞艇减阻数值模拟[J]. 工程力学, 2010, 27(2):222-227. Xie Fei, Ye Zhengyin. The simulation of the airship flow field with injection channel for the drag reduction[J]. Engineering Mechanics, 2010, 27(2):222-227. (in Chinese)
[5] Zhang K, Han Z, Song B. Flight performance analysis of hybrid airship[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, AIAA:2013:1318-1330.
[6] 李天娥, 孙晓颖, 张中昱, 等. 平流层飞艇气动阻力的数值模拟及公式拟合[J]. 工程力学, 2017, 34(8):249-256. Li Tiane, Sun Xiaoying, Zhang Zhongyu, et al. Numerical simulation and formula fitting of Aerodynamic drag force of stratosphere airship[J]. Engineering Mechanics, 2017, 34(8):249-256. (in Chinese)
[7] 任一鹏, 田中伟, 吴子牛. 飞艇空气动力学及其相关问题[J]. 航空学报, 2010, 31(3):431-443. Ren Yipeng, Tian Zhongwei, Wu Ziniu. Some aerodynamics problems of airship[J]. Acta Aeronauticaet Astronautica Sinica, 2010, 31(3):431-443. (in Chinese)
[8] Biava M, Carrion M, Steijl R, et al. CFD studies of Hybrid air vehicles[C]//AIAA Aerospace Sciences Meeting. San Diego, California, USA, AIAA, 2016.
[9] San B B, Wang Y Y, Ye Q. Numerical simulation and optimization study of the wind flow through a porous fence[J]. Environmental Fluid Mechanics, 2018, 2018(11):1-19.
[10] Chan S C, Shervington K, Hunt J. Wind tunnel study of a large aerostat, CFD validation[C]//AIAA Lighter-ThanAir Systems Technology (LTA) Conference. Daytona Beach, Florida, USA, AIAA, 2013.
[11] Alpman E, Long L N. Separated turbulent flow simulations using a Reynolds stress model and unstructured meshes[C]. AIAA 43rd Aerospace Sciences Meeting & Exhibit. Reno, Nevada, USA, AIAA, 2005.
[12] Kreplin H P, Volmers H, Meier H U. Shear stress measurements on an inclined prolate spheroid in the DFVLR 3 m x 3 m low speed wind tunnel[R]. Göttingen:DFVLR-AVA, 1985:IB 222-84 A 33.
[13] Kanoria A A, Panchal K, Dongre R, et al. Computational modelling of aerodynamic characteristics of airships in arbitrary motion[C]//22nd AIAA Lighter-Than-Air Systems Technology Conference. Dallas, Texas, USA, AIAA, 2015.
[14] 张丹, 郭雪岩. 平流层双轴椭球体飞艇绕流场的数值分析[J]. 力学季刊, 2008, 29(4):556-564. Zhang Dan, Guo Xueyan. Numerical analyses on ambient flow of a double-axis ellipsoidal stratospheric airship[J]. Chinese Quarterly of Mechanics, 2008, 29(4):556-564. (in Chinese)
[15] 黄龙太, 张超, 姜琬. 平流层飞艇大迎角气动特性分析[J]. 航空工程进展, 2013, 4(4):493-497. Huang Longtai, Zhang Chao, Jiang Wan. Aerodynamic analysis on large angle of attack in stratospheric airship[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4):493-497. (in Chinese)
[16] Smith S, Fortenberry M, Lee M, et al. HiSentinel 80:Flight of a high altitude airship[C]//11th AIAA Aviation Technology, Integration, and Operations (ATIO) conference. Virginia Beach, Virginia, USA, AIAA:2011.
[17] 陈昭庆. 张拉膜结构气弹失稳机理研究[D]. 哈尔滨:哈尔滨工业大学, 2015. Chen Zhaoqing. Investigation of aeroelastic instability mechanism of tensioned membrane structures[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
[18] 曹鹏钧, 姜琬, 张华. 基于响应面法的某双体飞艇囊体气动外形优化[J]. 航空计算技术, 2012, 24(1):39-42. Cao Pengjun, Jiang Wan, Zhang Hua. Aerodynamic configuration optimization of hull of a hybrid airship[J]. Aeronautical Computing Technique, 2012, 24(1):39-42. (in Chinese)
[19] Mehta D M, Pant R S, Lakshmipathy S, et al. Surrogate based design optimization of aerostat envelope[C]//AIAA Lighter-Than-Air Systems Technology (LTA) Conference. Daytona Beach, Florida, USA, AIAA, 2013.
[20] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows[J]. Recherche Aerospatiale, 1994, 1(1):5-21.
[21] Constantinescu G S, Pasinato H, Wang Y Q, et al. Numerical investigation of flow past a prolate spheroid[J]. Journal of Fluids Engineering, 2006, 124(4):904-910.
[22] Ram C V, Pant R S. Multi-disciplinary shape optimization of aerostat envelopes[J]. Journal of Aircraft, 2010, 47(3):1073-1076.
[23] Wang X L. Investigation of the drag characteristics of stratosphere airships for different cusp shapes[J]. Journal of Aircraft, 2012, 49(1):151-160.
[24] Han D, Wang X L, Chen L, et al. Adaptive backstepping control for a multi-vectored thrust stratospheric airship with thrust saturation in wind[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2015, 230(1):45-59.
[25] 吴小翠, 王一伟, 黄晨光, 等. 飞艇大攻角绕流气动特性模拟及湍流模型与参数影响研究[J]. 工程力学, 2014, 31(8):24-31. Wu Xiaocui, Wang Yiwei, Huang Chenguang, et al. Aerodynamic simulation of airship ambient flows with high attack angles and analysis on turbulence models and parameters[J]. Engineering Mechanics, 2014, 31(8):24-31. (in Chinese)
[26] 赵攀峰, 王永林, 刘传超. 平流层飞艇放飞、回收过程初步分析[J]. 航空科学技术, 2007(4):25-30. Zhao Panfeng, Wang Yonglin, Liu Chuanchao. Preparatory analyse on the release and recovery course of stratosphere airship[J]. Aeronautical Science, 2007(4):25-30. (in Chinese)
[27] Azinheira J R, Carneiro D P E, Ramos J G, et al. Mission path following for an autonomous unmanned airship[C]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation. San Francisco, California, USA, IEEE, 2000:1269-1275.
[28] Khoury G A, Gillett J D. Airship technology[M]. Cambridge:Cambridge University Press, 1999:181.
[29] Andan A D, Asrar W, Omar A A. Investigation of aerodynamic parameters of a Hybrid airship[J]. Journal of Aircraft, 2012, 49(2):658-662.
[1] 钱蓝萍, 李易, 陆新征, 闫维明. 小型汽车撞击后框架柱剩余承载力的数值研究[J]. 工程力学, 2018, 35(S1): 313-319.
[2] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
[3] 姚志勇, 张楠, 夏禾, 李小珍. 基于重叠网格的三维车桥系统气动特性研究[J]. 工程力学, 2018, 35(2): 38-46.
[4] 陈明, 王启. 内填钢板墙双肢冷轧C型钢框架抗震性能[J]. 工程力学, 2018, 35(12): 175-184.
[5] 郑朝荣, 王洪礼, 李胤松, 丁焕龙. 某摩天大楼室外平台行人风环境数值研究[J]. 工程力学, 2018, 35(1): 118-125.
[6] 王庆利, 牛献军, 冯立明. 圆CFRP-钢管混凝土压弯构件滞回性能的参数分析与恢复力模型[J]. 工程力学, 2017, 34(增刊): 159-166.
[7] 李天娥, 孙晓颖, 张中昱, 林国昌. 平流层飞艇气动阻力的数值模拟及公式拟合[J]. 工程力学, 2017, 34(8): 249-256.
[8] 马昕煦, 陈以一. 支方主圆T形相贯节点轴压承载力计算公式[J]. 工程力学, 2017, 34(5): 163-170.
[9] 马越, 杨应华. 热贮料作用下浅圆筒仓温度效应研究[J]. 工程力学, 2017, 34(10): 98-105.
[10] 张有佳, 李小军. 钢板混凝土组合墙轴压受力性能有限元分析[J]. 工程力学, 2016, 33(8): 84-92.
[11] 罗致, 李建中, 严搏. 山区高墩连续刚构桥墩梁相对位移控制研究[J]. 工程力学, 2016, 33(1): 148-156.
[12] 韩祎, 王景玄, 王文达. 内配型钢方钢管混凝土偏压构件受火全过程数值模拟[J]. 工程力学, 2015, 32(增刊): 60-65,90.
[13] 史艳莉, 车向龙, 王景玄. 内配工字型钢的矩形钢管混凝土双向偏压构件参数分析[J]. 工程力学, 2015, 32(增刊): 254-260.
[14] 孙晓颖, 李天娥, 陆正争, 武岳, 王长国. 平流层飞艇的多目标优化与决策[J]. 工程力学, 2015, 32(6): 243-250.
[15] 仇翯辰, 邱志平. 平流层飞艇充气柔性膜结构的区间不确定优化[J]. 工程力学, 2015, 32(4): 234-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 管俊峰, 姚贤华, 白卫峰, 陈记豪, 付金伟. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1): 70 -79,87 .
[2] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[3] 高彦芳, 陈勉, 林伯韬, 金衍. 多相非饱和多重孔隙介质的有效应力定律[J]. 工程力学, 2019, 36(1): 32 -43 .
[4] 于潇, 陈力, 方秦. 一种量测松散介质对应力波衰减效应的实验方法及其在珊瑚砂中的应用[J]. 工程力学, 2019, 36(1): 44 -52,69 .
[5] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1 -14,43 .
[6] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15 -22 .
[7] 高山, 郑向远, 黄一. 非高斯随机过程的短期极值估计:复合Hermite模型[J]. 工程力学, 2019, 36(1): 23 -31 .
[8] 白鲁帅, 李钢, 靳永强, 李宏男. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53 -60 .
[9] 崔兆彦, 徐明, 陈忠范, 王飞. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96 -103,118 .
[10] 贾布裕, 颜全胜, 余晓琳, 杨铮. 考虑行人随机性的人行桥人致横向振动稳定性分析[J]. 工程力学, 2019, 36(1): 155 -164 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日