工程力学 ›› 2019, Vol. 36 ›› Issue (1): 129-137,145.doi: 10.6052/j.issn.1000-4750.2017.11.0809

• 土木工程学科 • 上一篇    下一篇

单自由度混联II型惯容减震体系的随机地震响应与参数设计

潘超1, 张瑞甫2, 王超2, 逯静洲1   

  1. 1. 烟台大学土木工程学院, 山东, 烟台 264005;
    2. 同济大学结构工程及防灾研究所, 上海 200092
  • 收稿日期:2017-11-01 修回日期:2018-04-03 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 张瑞甫(1980-),男,陕西人,副研究员,博士,硕导,主要从事工程结构减震控制研究(E-mail:zhangruifu@tongji.edu.cn). E-mail:zhangruifu@tongji.edu.cn
  • 作者简介:潘超(1985-),男,山东人,讲师,博士,主要从事工程结构减震控制研究(E-mail:panchaotju@126.com);王超(1995-),女,山东人,学士,主要从事工程结构减震控制研究(E-mail:wangchao17@tongji.edu.cn);逯静洲(1973-),男,河北人,教授,博士,主要从事混凝土材料损伤本构与振动控制研究(E-mail:lujingzhou@sina.com).
  • 基金资助:
    国家自然科学基金项目(51778490,51479174);科技部“政府间国际科技创新合作”重点专项(2016YFE0127600);上海市浦江人才计划(17PJ1409200);山东省自然科学基金项目(ZR2018BEE033);烟台大学博士科研启动基金项目(TM17B20);中央高校基本科研业务费专项资金资助(22120180064)

STOCHASTIC SEISMIC RESPONSE AND DESIGN OF STRUCTURAL SYSTEM WITH SERIES-PARALLEL-II INERTER SYSTEM

PAN Chao1, ZHANG Rui-fu2, WANG Chao2, LU Jing-zhou1   

  1. 1. College of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China;
    2. Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, China
  • Received:2017-11-01 Revised:2018-04-03 Online:2019-01-29 Published:2019-01-10

摘要: 为了解混联Ⅱ型惯容减震系统(SPIS-Ⅱ)的减震机理,该文对设置SPIS-Ⅱ的单自由度体系进行了随机地震响应变化规律的研究并提出了参数优化设计的方法。首先在体系运动微分方程的基础上,基于随机振动的理论和方法推导了SPIS-Ⅱ单自由度体系在地震作用下频域响应传递函数及随机响应均方根的表达式。接着以金井清谱为随机地震输入模型,基于随机响应表达式研究了地震动参数和SPIS-Ⅱ关键参数对单自由度体系响应变化规律的影响。然后在参数研究的基础上,提出了SPIS-Ⅱ单自由度体系在地震作用下的实用优化设计方法,该方法以性能需求为设计目标,可同时考虑响应与成本的控制以及输入地震动的频谱特征。最后根据所提出方法编制程序进行了一系列实例设计,并进行了动力时程分析验证,设计及分析的结果均证实了该文提出方法的有效性。

关键词: 惯容, 随机地震响应, 优化设计, 振动控制, 性能需求

Abstract: In order to comprehend the response mitigation mechanism of a specified inerter system named series-parallel-Ⅱ inerter system (SPIS-Ⅱ), the response variation trends for a single-degree-of-freedom (SDOF) system with SPIS-Ⅱ are studied and the parametric optimal design method is proposed. The mathematical expressions of frequency-domain response transfer functions and root-mean-square random responses of a SDOF system with SPIS-Ⅱ are derived based on the equations of motion and theories in random vibration. Then the response variation trends of a SDOF system with SPIS-Ⅱ are investigated by adopting Kanai-Tajimi's spectrum as a seismic input model along with the change of key parameters of seismic ground motion and SPIS-Ⅱ. Based on parametric studies, a practical optimal design method of a SDOF system with SPIS-Ⅱ is proposed. For this method, seismic performance demand is taken as the design target and response control, cost minimization, and spectral properties of seismic excitations are all considered during design. Finally, a computer program is developed according to the proposed method to conduct design examples, and dynamic time-history analyses are also carried out. The results of example design and analysis prove the effectiveness of the proposed design method.

Key words: inerter, stochastic seismic response, optimal design, vibration control, performance demand

中图分类号: 

  • TU318
[1] Symans M D, Charney F A, Whittaker A S, et al. Energy dissipation systems for seismic applications:Current practice and recent developments[J]. Journal of Structural Engineering, 2008, 134(1):3-21.
[2] Saaed T E, Nikolakopoulos G, Jonasson J E, et al. A state-of-the-art review of structural control systems[J]. Journal of Vibration and Control, 2015, 21(5):919-937.
[3] 杨青顺, 甄伟, 陆新征, 等. 带端部阻尼器伸臂桁架的抗震性能试验研究[J]. 工程力学, 2018, 35(2):47-58. Yang Qingshun, Zhen Wei, Lu Xinzheng, et al. Experimental study on the seismic performance of damped outriggers[J]. Engineering Mechanics, 2018, 35(2):47-58. (in Chinese)
[4] Den Hartog J P. Mechanical Vibrations[M].:New York:McGraw-Hill Book Company, 1956.
[5] 刘良坤, 谭平, 闫维明, 等. 一种NES与TMD的混合控制方案研究[J]. 工程力学, 2017, 34(9):64-72. Liu Liangkun, Tan Ping, Yan Weiming, et al. Analysis of a hybrid scheme comprised of nonlinear energy sink and tuned mass damper[J]. Engineering Mechanics, 2017, 34(9):64-72. (in Chinese)
[6] Arakaki T, Kuroda H, Arima F, et al. Development of seismic devices applied to ball screw:Part 1 Basic performance test of RD-series[J]. AIJ Journal of Technology and Design, 1999, 5(8):239-244.
[7] Smith M C. Synthesis of mechanical networks:The inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10):1648-1662.
[8] Smith M C, Wang F U C. Performance benefits in passive vehicle suspensions employing inerters[J]. Vehicle System Dynamics, 2004, 42(4):235-257.
[9] 陈龙, 张孝良, 聂佳梅, 等. 基于半车模型的两级串联型ISD悬架性能分析[J]. 机械工程学报, 2012, 48(6):102-108. Chen Long, Zhang Xiaoliang, Nie Jiamei, et al. Performance analysis of two-stage series-connected inerter-spring-damper suspension based on half-car model[J]. Journal of Mechanical Engineering, 2012, 48(6):102-108. (in Chinese)
[10] 杨晓峰, 沈钰杰, 陈龙, 等. 基于动力吸振理论的车辆ISD悬架设计与性能分析[J]. 汽车工程, 2014, 36(10):1262-1266. Yang Xiaofeng, Shen Yujie, Chenlong, et al. Design and performance analysis of vehicle ISD suspension based on dynamic vibration absorber theory[J]. Automotive Engineering, 2014, 36(10):1262-1266. (in Chinese)
[11] 毛明, 王乐, 陈轶杰, 等. 惯容器及惯容器-弹簧-阻尼器悬架研究进展[J]. 兵工学报, 2016, 37(3):525-534. Mao Ming, Wang Le, Chen Yijie, et al. Research progress in inerter and inerter-spring-damper suspension[J]. Acta Armamentarii, 2016, 37(3):525-534. (in Chinese)
[12] Saito K, Kurita S, Inoue N. Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling[J]. Journal of Structural Engineering, 2007, 53:53-66.
[13] Ikago K, Saito K, Inoue N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3):453-474.
[14] Pan C, Zhang R F, Luo H, et al. Demand-based optimal design of oscillator with parallel-layout viscous inerter damper[J]. Structural Control and Health Monitoring, 2018, 25(1):e2051.
[15] Kida H, Watanabe Y, Nakaminami S, et al. Full-scale dynamic tests of tuned viscous mass damper with force restriction mechanism and Its analytical verification[J]. Journal of Structural and Construction Engineering Architectural Institute of Japan, 2011, 76(665):1271-1280.
[16] Nakamura Y, Fukukita A, Tamura K, et al. Seismic response control using electromagnetic inertial mass dampers[J]. Earthquake Engineering and Structural Dynamics, 2014, 43(4):507-527.
[17] Lazar I F, Neild S A, Wagg D J. Using an inerter-based device for structural vibration suppression[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(8):1129-1147.
[18] 罗浩, 张瑞甫, 翁大根, 等. 一种旋转黏滞质量阻尼器对结构响应的控制研究[J]. 防灾减灾工程学报, 2016, 36(2):295-301. Luo Hao, Zhang Ruifu, Weng Dagen, et al. Study of a series viscous mass damper in the control of structural response[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2):295-301. (in Chinese)
[19] Luo H, Zhang R F, Weng D G. Mitigation of liquid sloshing in storage tanks by using a hybrid control method[J]. Soil Dynamics and Earthquake Engineering, 2016, 90:183-195.
[20] 阎武通, 韩冰, 文永奎. 新型调谐黏滞质量阻尼器对斜拉桥的减震控制分析[J]. 土木工程学报, 2016, 49(S1):66-71. Yan Wutong, Han Bing, Wen Yongkui, et al. Seismic control analysis of cable-stayed bridge based on tuned viscous mass damper[J]. China Civil Engineering Journal, 2016, 49(S1):66-71. (in Chinese)
[21] Wen Y, Chen Z, Hua X. Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures[J]. Journal of Structural Engineering, 2017, 143(4):4016201-4016207.
[22] Kanai K. Semi-empirical formula for the seismic characteristics of the ground[J]. Bulletin of Earthquake Research Institute, University of Tokyo, 1957, 35(2):309-325.
[23] Papageorgiou C, Houghton N E, Smith M C. Experimental testing and analysis of inerter devices[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2009, 131(1):1-11.
[24] Swift S J, Smith M C, Glover A R, et al. Design and modelling of a fluid inerter[J]. International Journal of Control, 2013, 86(11):2035-2051.
[25] Hu Y, Chen M Z Q, Shu Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution[J]. Journal of Sound and Vibration, 2015, 346:17-36.
[26] Crandall S H, Mark W D. Random vibration in mechanical systems[M]. New York:Academic Press, 2014.
[27] Chankong V, Haimes Y. Multiobjective decision making theory and methodology[M]. New York:Elsevier, 1983.
[28] Oliphant T E. Python for scientific computing[J]. Computing in Science & Engineering, 2007, 9(3):10-20.
[1] 朱前坤, 蒲兴龙, 惠晓丽, 张琼, 杜永峰. 基于人群-结构耦合作用甘肃省体育馆悬挂结构振动舒适度评估及控制[J]. 工程力学, 2018, 35(S1): 46-52.
[2] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
[3] 蒲利东, 罗务揆, 严泽洲. 气动伺服弹性系统结构陷幅滤波器优化设计[J]. 工程力学, 2018, 35(4): 235-241.
[4] 李寿英, 曾庆宇, 王世峰, 邹国栋, 陈政清. 阻尼器对悬索桥双吊索减振效果的理论研究[J]. 工程力学, 2018, 35(3): 186-192,226.
[5] 孙彤, 李宏男. 新型多维形状记忆合金阻尼器的试验研究[J]. 工程力学, 2018, 35(3): 178-185.
[6] 杨简, 陈宝春, 沈秀将, 林毅焌. UHPC单轴拉伸试验狗骨试件优化设计[J]. 工程力学, 2018, 35(10): 37-46,55.
[7] 邓开来, 潘鹏. 变截面软钢剪切阻尼器试验研究[J]. 工程力学, 2016, 33(5): 82-88.
[8] 金树, 任宗栋, 李宏男, 张卓群. 输电塔结构离散变量优化设计方法[J]. 工程力学, 2016, 33(11): 84-94.
[9] 刘庆宽, 郑云飞, 赵善博, 马文勇, 刘小兵, 陈进杰. 螺旋线参数对斜拉索风雨振抑振效果的试验研究[J]. 工程力学, 2016, 33(10): 138-144.
[10] 宫成, 刘志文, 谢钢, 龚平. 高墩大跨斜拉桥悬臂施工期风致振动控制[J]. 工程力学, 2015, 32(增刊): 122-128.
[11] 楼梦麟, 韩博宇. 高层建筑环境振动TLD控制研究[J]. 工程力学, 2015, 32(增刊): 184-190.
[12] 刘庆宽, 郑云飞, 刘小兵, 马文勇. 斜拉桥斜拉索的风荷载、风致振动与控制[J]. 工程力学, 2015, 32(9): 1-8.
[13] 仲健林, 任杰, 马大为, 王玺. 基于精确数值建模方法的自适应底座优化设计研究[J]. 工程力学, 2015, 32(9): 229-235,249.
[14] 丁幼亮, 耿方方, 葛文浩, 宋建永, 李万恒, 王玉倩. 多塔斜拉桥风致抖振响应的粘滞阻尼器控制研究[J]. 工程力学, 2015, 32(4): 130-137.
[15] 彭剑,赵珧冰,孙测世,王连华. 磁流变阻尼器—斜拉索控制系统中的时滞效应[J]. 工程力学, 2014, 31(4): 155-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日