工程力学 ›› 2019, Vol. 36 ›› Issue (1): 119-128.doi: 10.6052/j.issn.1000-4750.2017.11.0805

• 土木工程学科 • 上一篇    下一篇

O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析

陈云1, 陈超1, 蒋欢军2, 万志威2, 刘涛1   

  1. 1. 海南大学土木建筑工程学院, 海口 570228;
    2. 同济大学土木工程防灾国家重点实验室, 上海 200092
  • 收稿日期:2017-11-02 修回日期:2018-02-01 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 蒋欢军(1973-),男,浙江人,教授,博士,主要从事工程结构抗震与防灾研究(E-mail:jhj73@tongji.edu.cn). E-mail:jhj73@tongji.edu.cn
  • 作者简介:陈云(1980-),男,陕西人,副教授,博士,主要从事工程结构抗震与防灾研究(E-mail:chenyunhappy@163.com);陈超(1993-),男,四川人,硕士,主要从事结构振动控制研究(E-mail:chenchaosqkcx@163.com);万志威(1992-),男,湖北人,硕士,主要从事结构振动控制研究(E-mail:jnwanzhiwei@163.com);刘涛(1991-),男,陕西人,硕士,主要从事结构振动控制研究(E-mail:tao423589@163.com).
  • 基金资助:
    国家自然科学基金项目(51408170);海南省重点研发计划项目(ZDYF2016151);海南省科协青年科技英才创新计划项目(201501)

EXPERIMENT ANALYSIS OF MECHANICAL PROPERTIES OF O-SHAPED STEEL PLATES AND HIGH DAMPING VISCOELASTIC COMPOSITE ENERGY DISSIPATORS

CHEN Yun1, CHEN Chao1, JIANG Huan-jun2, WAN Zhi-wei2, LIU Tao1   

  1. 1. College of Civil Engineering and Architecture, Hainan University, Haikou 570228, China;
    2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2017-11-02 Revised:2018-02-01 Online:2019-01-29 Published:2019-01-10

摘要: 提出了一种由O型钢板金属阻尼器与高阻尼黏弹性阻尼器并联而成的复合型消能器,阐述了其构造形式和工作机理,对其进行了低周反复加载试验。研究结果表明:复合型消能器具有较强的变形能力和饱满的滞回曲线;其力学性能稳定,受加载频率影响较小;该消能器兼具位移型阻尼器与速度型阻尼器的优点,小变形时,黏弹性阻尼器发挥主要的耗能作用,O型钢板金属阻尼器提供一定的附加刚度,大变形时,二者共同耗能;相比单一类型的消能器,该复合型消能器提高了阻尼力和抗震安全储备;采用Bouc-Wen模型建立了该消能器的力学模型,计算结果与试验结果吻合较好。

关键词: 金属阻尼器, 高阻尼, 黏弹性阻尼器, 复合型消能器, 力学性能, 恢复力模型

Abstract: A new composite energy dissipator made of two O-shaped steel plate metal dampers and one high damping viscoelastic damper was developed. The construction details and working mechanisms were introduced. Cyclic loading tests on the dissipator were carried out. The test results show that the composite energy dissipator possesses a large deformation capability and a full hysteresis curve. The mechanical properties of the dissipator are stable and insensitive to loading frequencies. It has the advantages of the velocity-dependent damper and displacement-dependent damper. When the deformation is small, the viscoelastic damper plays the major role in energy dissipation, and the O-shaped steel plate metal dampers contribute to stiffness. When the deformation is large, two types of dampers dissipate the seismic energy together. Compared with the dampers of a single type, the composite energy dissipator offers a much larger damping force and seismic safety margin. The calculation model for the composite dissipator was established by using the Bouc-Wen model. The calculation results were in good agreement with experimental results.

Key words: metal damper, high damping, viscoelastic damper, composite energy dissipator, mechanical properties, restoring force model

中图分类号: 

  • TU317.2
[1] Song T T, Dargush G F. Passive energy dissipation systems in structural engineering[M]. New York:John Wiley& Sons. Inc., 1997.
[2] Matsagar V. Special issue:earthquake engineering and structural dynamics[J]. Journal of The Institution of Engineers (India):Series A, 2016, 97(4):355-357.
[3] Zhou Q, Lu X. Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers[J]. Structural Engineering and Mechanics, 2004, 17(2):187-201.
[4] Yamamoto M, Sone T. Damping systems that are effective over a wide range of displacement amplitudes using metallic yielding component and viscoelastic damper in series[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(14):2097-2114.
[5] Moreschi L M, Singh M P. Design of yielding metallic and friction dampers for optimal seismic performance[J]. Earthquake engineering & structural dynamics, 2003, 32(8):1291-1311.
[6] Dargush G F, Sant R S. Evolutionary aseismic design and retrofit of structures with passive energy dissipation[J]. Earthquake engineering & structural dynamics, 2005, 34(13):1601-1626.
[7] Castaldo P, De Iuliis M. Optimal integrated seismic design of structural and viscoelastic bracing-damper systems[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(12):1809-1827.
[8] Guo J W W, Christopoulos C. Response prediction, experimental characterization and P-spectra design of frames with viscoelastic-plastic dampers[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(11):1855-1874.
[9] Christopoulos C, Montgomery M. Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of high -rise buildings[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(15):2217-2233.
[10] Tsai KC. Design of steel triangular plate energy absorbers for seismic-resistant construction[J]. Earthquake Spectra, 1993, 9(3):505-528.
[11] 周云, 刘季. 新型耗能(阻尼)减震器的开发与研究[J]. 地震工程与工程振动, 1998, 18(1):71-79. Zhou Yun, Liu Ji. Development and study of new energy dissipators (dampers)[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(1):71-79. (in Chinese)
[12] 吴从晓, 周云, 邓雪松. 钢铅粘弹性阻尼器试验研究[J]. 工程力学, 2012, 29(3):150-155. Wu Congxiao, Zhou Yun, Deng Xuesong. Experimental study on steel-lead viscoelastic damper[J]. Engineering Mechanics, 2012, 29(3):150-155. (in Chinese)
[13] 吴斌, 张纪刚, 欧进萍. 考虑几何非线性的Pall型摩擦阻尼器滞回特性分析[J]. 工程力学, 2003, 20(1):21-26. Wu Bin, Zhang Jigang, Ou Jinping. The analysis of hysteretic behavior of pall-typed frictional dampers considering geometry nonlinearity[J]. Engineering Mechanics, 2003, 20(1):21-26. (in Chinese)
[14] 邓开来, 潘鹏. 变截面软钢剪切阻尼器试验研究[J]. 工程力学, 2016, 33(5):82-88. Deng Kailai, Pan peng. Experimental study of steel shear panel dampers with varying cross-sections[J]. Engineering Mechanics, 2016, 33(5):82-88. (in Chinese)
[15] 吴从晓, 周云, 徐昕, 等. 扇形铅黏弹性阻尼器滞回性能试验研究[J]. 建筑结构学报, 2014, 35(4):199-207. Wu Congxiao, Zhou Yun, Xu Xin, Zhang Chao, Deng Xue song. Experimental investigation on hysteretic performance of sector lead viscoelastic damper[J]. Journal of Building Structures, 2014, 35(4):199-207. (in Chinese)
[16] 钱辉, 李宏男, 任文杰, 等. 形状记忆合金复合摩擦阻尼器设计及试验研究[J]. 建筑结构学报, 2011, 32(9):58-64. Qian Hui, Li Hongnan, Ren Wenjie, Cheng Huai. Experimental investigation of an innovative hybrid shape memory alloys friction damper[J]. Journal of Building Structures, 2011, 32(9):58-64. (in Chinese)
[17] 任文杰, 王利强, 马志成, 等. 形状记忆合金-摩擦复合阻尼器力学性能研究[J]. 建筑结构学报, 2013, 34(2):83-90. Ren Wenjie, Wang Liqiang, Ma Zhicheng, et al. Investigation on mechanical behavior of innovative shape memory alloy-friction damper[J]. Journal of Building Structures, 2013, 34(2):83-90. (in Chinese)
[18] 周云, 卢德辉, 张敏. 钢管铅阻尼器的性能试验研究[J]. 土木工程学报, 2017, 50(1):46-52. Zhou Yun, Lu Dehui, Zhang Min. Study on mechanical properties of lead-filled steel tube damper[J]. China Civil Engineering Journal, 2017, 50(1):46-52. (in Chinese)
[19] 吕西林, 陈云, 蒋欢军. 可更换连梁保险丝抗震性能试验研究[J]. 同济大学学报(自然科学版), 2013, 41(9):1318-1325. Lv Xilin, Chen Yun, Jiang Huanjun. Experimental study on seismic behavior of "Fuse" of replaceable coupling beam[J]. Journal of Tong ji University (Natural Science), 2013, 41(9):1318-1325. (in Chinese)
[20] 王艮平, 张超, 邓雪松, 等. 扇形铅黏弹性阻尼器加固RC框架的抗震性能试验研究[J]. 土木工程学报, 2016, 49(10):41-48. Wang Genping, Zhang Chao, Deng Xuesong, et al. Experimental study on seismic performance of RC frame retrofitted with sector lead viscoelastic dampers[J]. China Civil Engineering Journal, 2016, 49(10):41-48. (in Chinese)
[21] 张香成, 何尚文, 李倩, 等. 铅-磁流变阻尼器的试验及计算模型[J]. 工程力学, 2016, 33(10):123-128. Zhang Xiangcheng, He Shangwen, Li Qian, et al. Test and mathematic model of lead magnetorheological damper[J]. Engineering Mechanics, 2016, 33(10):123-128. (in Chinese)
[22] JG/T 209-2012, 建筑消能阻尼器[S]. 北京:中国标准出版社, 2012. JG/T 209-2012, Dampers for vibration energy dissipation of building[S]. Beijing:China Standard Press, 2012. (in Chinese)
[1] 孙超杰, 李庆华, 吕君锋. 型钢-UHTCC组合梁静载力学性能试验研究[J]. 工程力学, 2018, 35(S1): 62-66,79.
[2] 张明聚, 杨萌, 王锡军. 基坑工程内支撑活络端结构革新性研究[J]. 工程力学, 2018, 35(S1): 88-94,119.
[3] 张佩, 杜修力, 金浏, 路德春, 龚秋明. 块石长轴倾角对土石混合体宏观力学性能的影响研究[J]. 工程力学, 2018, 35(9): 64-72.
[4] 崔瑶, 李浩, 刘浩, 王晶秋, 唐贞云. 外露式钢柱脚恢复力特性分析[J]. 工程力学, 2018, 35(7): 232-242.
[5] 周颖, 龚顺明. 混合非线性黏弹性阻尼器非线性特征与力学模型研究[J]. 工程力学, 2018, 35(6): 132-143.
[6] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[7] 王玉银, 王庆贺, 耿悦. 建筑结构用再生混凝土水平受力构件研究进展[J]. 工程力学, 2018, 35(4): 1-15.
[8] 王卫华, 张伟, 白杨, 谭清华. 高温下内配圆管的方钢管混凝土柱轴压力学性能[J]. 工程力学, 2018, 35(3): 141-150.
[9] 吴宜峰, 王浩, 李爱群, 杨凡. 新型多功能隔震支座力学性能的数值模拟与实验验证[J]. 工程力学, 2018, 35(2): 195-202.
[10] 郑山锁, 张晓辉, 赵旭冉, 刘毅. 近海大气环境下锈蚀钢框架梁抗震性能试验及恢复力模型研究[J]. 工程力学, 2018, 35(12): 98-106,115.
[11] 张中昊, 支旭东, 李奇训, 汪恩良. 新型索撑式单层球面网壳选型与预应力张拉模拟研究[J]. 工程力学, 2018, 35(10): 193-202,211.
[12] 蔡小宁, 孟少平. 预应力自复位混凝土框架节点恢复力模型研究[J]. 工程力学, 2018, 35(1): 182-190,200.
[13] 徐龙河, 谢行思, 李忠献. 自复位变阻尼耗能支撑的力学原理与性能研究[J]. 工程力学, 2018, 35(1): 201-208.
[14] 王庆利, 牛献军, 冯立明. 圆CFRP-钢管混凝土压弯构件滞回性能的参数分析与恢复力模型[J]. 工程力学, 2017, 34(增刊): 159-166.
[15] 刘静雅, 霍静思, 刘艳芝. CFRP约束高温后混凝土力学性能试验研究[J]. 工程力学, 2017, 34(9): 158-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日