工程力学 ›› 2019, Vol. 36 ›› Issue (1): 104-118.doi: 10.6052/j.issn.1000-4750.2017.11.0801

• 土木工程学科 • 上一篇    下一篇

基于钢筋应变差的混凝土双向板极限状态分析方法

王勇1,2, 张亚军1, 龙帮云2,3, 马帅1, 张苏河1,3, 袁广林1   

  1. 1. 中国矿业大学江苏省土木工程环境灾变与结构可靠性重点实验室, 江苏, 徐州 221008;
    2. 中国矿业大学深部岩土力学与地下工程国家重点试验室, 江苏, 徐州 221008;
    3. 江苏建筑节能与建造技术协同创新中心, 江苏, 徐州 221008
  • 收稿日期:2017-11-01 修回日期:2018-05-17 出版日期:2019-01-29 发布日期:2019-01-10
  • 通讯作者: 王勇(1984-),男,山东人,副教授,博士,从事混凝土结构及构件抗火性能研究(E-mail:yongwang@cumt.edu.cn). E-mail:yongwang@cumt.edu.cn
  • 作者简介:张亚军(1996-),男,江苏人,硕士生,主要从事结构抗火研究(E-mail:yj_zhang@163.com);龙帮云(1971-),男,四川人,副教授,硕士,主要从事建筑结构鉴定与加固研究(E-mail:lbygbh@cumt.edu.cn);马帅(1992-),男,宁夏人,硕士生,主要从事结构抗火研究(E-mail:mashuai_cumt@163.com);张苏河(1999-),男,江苏人,本科生,主要从事结构抗火研究(E-mail:1514385053@qq.com);袁广林(1965-),男,河南人,教授,博士,主要从事结构抗火和工程加固研究(E-mail:ygl65@cumt.edu.cn).
  • 基金资助:
    国家青年自然科学基金项目(51408594);中国博士后科学基金项目(2014M560461);中央高校基本科研业务费专项基金项目(2018QNB10);中国博士后科学基金特别资助项目(2016T90525);江苏建筑节能与建造技术协同创新中心资助项目(SJXTQ1614)

ANALYTICAL METHOD FOR ULTIMATE STATE OF TWO-WAY CONCRETE SLABS BASED ON STEEL STRAIN DIFFERENCE

WANG Yong1,2, ZHANG Ya-jun1, LONG Bang-yun2,3, MA Shuai1, ZHANG Su-he1,3, YUAN Guang-lin1   

  1. 1. Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, China University of Mining & Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China;
    2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China;
    3. Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Xuzhou, Jiangsu 221008, China
  • Received:2017-11-01 Revised:2018-05-17 Online:2019-01-29 Published:2019-01-10

摘要: 为了合理确定混凝土双向板荷载-变形关系及极限状态,该文进行了一足尺混凝土双向板承载力试验研究,观察试验板裂缝开展及破坏模式,对荷载-变形关系、钢筋应变和板角约束力进行了测量。在此基础上,基于塑性铰线理论,考虑受拉薄膜效应,提出钢筋应变差概念、钢筋和混凝土应变破坏准则,结合板块内力平衡方程和弯矩平衡方程,建立混凝土双向板荷载-变形关系和极限荷载计算方法。同时,结合板壳有限元理论,编程计算混凝土板荷载-变形关系,分析薄膜效应机理及钢筋应变,并用于验证该文理论方法的合理性。最后,将该文理论方法计算结果与国内外试验结果以及其他理论结果进行对比。结果表明:与试验结果和其他理论计算结果相比,该文理论方法原理简单,计算容易,精度满足要求,可用于确定混凝土双向板的极限状态。

关键词: 混凝土双向板, 理论方法, 有限元, 薄膜效应, 极限状态, 应变

Abstract: To reasonably determine the load-deflection and ultimate state of two-way concrete slabs, a test for a full-scale two-way concrete slab was conducted, including the cracks and failure mode, the load-deflection, steel strain and corners' restraint forces. Based on the test results, by solving the force and moment equilibrium equations and considering the tensile membrane action, one theoretical method was established according to the yield-line theory, the proposed steel strain difference, concrete and steel strain failure criteria to predict the slabs' load-deflection and the limit loads. Meanwhile, according to the shell finite element, the nonlinear procedure was developed to predict the load-deflection, the membrane mechanics and steel strains of the concrete slabs, and the rationality of the present theoretical method was verified. The comparison of the results predicted by the present method with other methods and the test results was conducted. The result shows that:compared with the test results and other methods, the present theoretical method is simple and easy to calculate, and it is capable of predicting the ultimate state of two-way concrete slabs with reasonable accuracy.

Key words: concrete two-way slab, theoretical method, finite element, membrane effect, ultimate state, strain

中图分类号: 

  • TU375.2
[1] 江见鲸, 陆新征. 混凝土结构有限元分析[M]. 北京:清华大学出版社, 2013. Jiang Jianjing, Lu Xinzheng. Finite element analysis of concrete structures[M]. Beijing:Tsinghua University Press, 2013. (in Chinese)
[2] 朱伯芳. 有限单元法原理与应用[M]. 北京:中国水利水电出版社, 2009. Zhu Bofang. The finite element method theory and applications[M]. Beijing:China Water & Power Press, 2009. (in Chinese)
[3] Wang Yong, Dong Yuli, Zhou Guangchun. Nonlinear numerical modeling of two-way reinforced concrete slabs subjected to fire[J]. Computers and Structures, 2013, 119:23-36.
[4] Bailey C G, Toh W. Behaviour of concrete floor slabs at ambient and temperatures[J]. Fire Safety Journal, 2007, 42(6):425-436.
[5] Bailey C G, Toh W. Small-scale concrete slab tests at ambient and elevated temperatures[J]. Engineering Structures, 2007, 29(10):2775-2791.
[6] 李国强, 周昊圣, 郭士雄. 火灾下钢结构建筑楼板的薄膜效应机理及理论模型[J]. 建筑结构学报, 2007, 28(5):40-47. Li Guoqiang, Zhou Haosheng, Guo Shixiong. Mechanism and theoretical model of membrane action in slabs of steel buildings subjected to fire[J]. Journal of Building Structures, 2007, 28(5):40-47. (in Chinese)
[7] 张娜思, 李国强. 火灾下组合楼板薄膜效应分析的改进方法[J]. 土木工程学报, 2009, 42(3):29-35. Zhang Nasi, Li Guoqiang. An innovative analytical method for the membrane action of composite floor slabs in fire[J]. China Civil Engineering Journal, 2009, 42(3):29-35. (in Chinese)
[8] 董毓利. 用变形和分解原理求混凝土板的受拉薄膜效应[J]. 力学学报, 2010, 42(6):1180-1187. Dong Yuli. Calculation of tensile membrane effects of concrete slabs using deformation additive decomposition theorem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6):1180-1187. (in Chinese)
[9] Yong Wang, Yuli Dong, Guanglin Yuan, Chaoying Zou. New failure criterion to determine the load carrying capacity of two-way reinforced concrete slabs[J]. Advances in Structural Engineering, 2015, 18(2):221-236.
[10] Omer E, Izzuddin B A, Elghazouli A Y. Failure of unrestrained lightly reinforced concrete slabs under fire-Part I:Analytical models[J]. Engineering Structures, 2010, 32(9):2631-2646.
[11] Omer E, Izzuddin B A, Elghazouli A Y. Failure of unrestrained lightly reinforced concrete slabs under fire-Part Ⅱ:Verification and application[J]. Engineering Structures, 2010, 32(9):2647-2657.
[12] Cashell K A, Elghazouli A Y, Izzuddin B A. Failure assessment of lightly reinforced floor slabs. I:Experimental investigation[J]. Journal of Structural Engineering, 2011, 137(9):977-988.
[13] Cashell K A, Elghazouli A Y, Izzuddin B A. Failure assessment of lightly reinforced floor slabs. Ⅱ:Analytical studies[J]. Journal of Structural Engineering, 2011, 137(9):989-1001.
[14] Herraiz B, Vogel T. Novel design approach for the analysis of laterally unrestrained reinforced concrete slabs considering membrane action[J]. Engineering Structures, 2016, 123:313-329.
[15] Burgess I. Yiled line plasticity and tensile membrane action in lightly-reinforced rectangular concrete slabs[J]. Engineering Structures, 2017, 138:195-214.
[16] Ockleston A J. Load tests on a three storey reinforced concrete building in Johannesburg[J]. The Structural Engineer, 1955, 33(10):304-322.
[17] Taylor R, Maher D, Hayes B. Effect of the arrangement of reinforcement on the behavior of reinforced concrete slabs[J]. Magazine of Concrete Research, 1965, 18(55):85-94.
[18] Sawczuk A, Winnicki L. Plastic behavior of simply supported reinforced concrete plates at moderately large deflections[J]. International Journal of Solids and Structures, 1965, 1(1):97-111.
[19] Hayes B. Allowing for membrane action in the plastic analysis of rectangular reinforced concrete slabs[J]. Magazine of Concrete Research, 1968, 20(65):205-212.
[20] Cameron N J K, Usmani A S. New design method to determine the membrane capacity of laterally restrained composite floor slabs in fire Part 1:theory and method[J]. The Structural Engineer, 2005, 83(19):1-6.
[21] JTG D62-2012, 公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:人民交通出版社, 2012. JTG D62-2012, Code for design of highway reinforced concrete and prestressed concrete bridges and culverts[S]. Beijing:China Communications Press, 2012. (in Chinese)
[22] GB50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2015. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[23] GB 50152-2012, 混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社, 2012. GB 50152-2012, Standard for test method of concrete structures[S]. Beijing:China Architecture and building Press, 2012. (in Chinese)
[24] Ghoneim M G, Mcgregor J G. Tests of reinforced concrete plates under combined in-plane and lateral loads[J]. ACI Structural Journal, 1994, 91(1):19-30.
[25] 张大山, 董毓利, 房圆圆. 考虑受拉薄膜效应的板块平衡法修正及在混凝土双向板中的应用[J]. 工程力学, 2017, 34(3):204-210. Zhang Dashan, Dong Yuli, Fang Yuanyuan. Modification of segment equilibrium method through considering tensile membrane effects and its application in two-way concrete slabs[J]. Engineering Mechanics, 2017, 34(3):204-210, 240. (in Chinese).
[26] 郑颖人, 王乐, 孔亮, 等. 钢材破坏条件与极限分析法在钢结构中应用探索[J]. 工程力学, 2018, 35(1):55-65. Zheng Yingren, Wang Le, Kong Liang, et al. Steel damage condition and application of ultimate analysis method in steel structures[J]. Engineering Mechanics, 2018, 35(1):55-65. (in Chinese).
[27] 王勇, 段亚昆, 张亚军, 等. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(3):65-78. Wang Yong, Duan Yakun, Zhang Yajun, et al. Experiment and numerical analysis on the fire-resistant performance of two-way concrete slabs with unilateral in-plane restraints[J]. Engineering Mechanics, 2018, 35(3):65-78. (in Chinese)
[1] 周云, 陈太平, 胡翔, 易伟建. 考虑周边结构约束影响的RC框架结构防连续倒塌性能研究[J]. 工程力学, 2019, 36(1): 216-226,237.
[2] 袁驷, 蒋凯峰, 邢沁妍. 膜结构极小曲面找形的一种自适应有限元分析[J]. 工程力学, 2019, 36(1): 15-22.
[3] 白鲁帅, 李钢, 靳永强, 李宏男. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53-60.
[4] 王丕光, 赵密, 李会芳, 杜修力. 一种高精度圆柱形人工边界条件:水-柱体相互作用问题[J]. 工程力学, 2019, 36(1): 88-95.
[5] 温科伟, 刘树亚, 杨红坡. 基于小应变硬化土模型的基坑开挖对下穿地铁隧道影响的三维数值模拟分析[J]. 工程力学, 2018, 35(S1): 80-87.
[6] 杨志坚, 雷岳强, 谭雅文, 李帼昌, 王景明. 改进的PHC管桩与承台连接处桩端受力性能研究[J]. 工程力学, 2018, 35(S1): 223-229.
[7] 王园园, 段树金, 牛润明. 钢-混凝土组合与叠合双重作用梁负弯矩区刚度和叠合面滑移研究[J]. 工程力学, 2018, 35(S1): 265-269.
[8] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[9] 赵志, 戴靠山, 毛振西, 张采薇. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
[10] 罗威, 肖云逸, 何栋尔, 章子华. 快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验[J]. 工程力学, 2018, 35(S1): 307-312,324.
[11] 赵保庆, 王启明, 李志恒, 雷政. FAST圈梁支承结构性能理论与实验研究[J]. 工程力学, 2018, 35(S1): 200-204,211.
[12] 关少钰, 白涌滔. 基于双剪统一强度理论应变退化模型的隧道结构稳定性分析[J]. 工程力学, 2018, 35(S1): 205-211.
[13] 何群, 陈以一, 田海. LYP100钢材大应变下滞回性能[J]. 工程力学, 2018, 35(S1): 27-33.
[14] 王兵, 尤洪旭, 刘晓. 高温后型钢再生混凝土梁受弯研究[J]. 工程力学, 2018, 35(S1): 161-165,180.
[15] 刘晓, 徐建烨, 王兵. 高温后中空夹层钢管混凝土柱压弯机理分析[J]. 工程力学, 2018, 35(S1): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日