工程力学 ›› 2019, Vol. 36 ›› Issue (2): 78-86.doi: 10.6052/j.issn.1000-4750.2017.11.0791

• 土木工程学科 • 上一篇    下一篇

钢筋混凝土柱冻融损伤模型研究

张艺欣, 郑山锁, 裴培, 李磊, 秦卿, 董立国   

  1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055
  • 收稿日期:2017-11-01 修回日期:2018-02-01 出版日期:2019-02-22 发布日期:2019-02-22
  • 通讯作者: 张艺欣(1991-),女,河南人,博士生,主要从事结构抗震研究(E-mail:zyx19910619@126.com). E-mail:zyx19910619@126.com
  • 作者简介:郑山锁(1960-),男,陕西人,教授,博士,主要从事结构工程与工程抗震研究(E-mail:zhengshansuo@263.net);裴培(1992-),女,安徽人,硕士生,主要从事结构抗震研究(E-mail:743513468@qq.com);李磊(1983-),男,湖北人,副教授,博士,主要从事结构抗震研究(E-mail:lilei1004@163.com);秦卿(1989-),男,陕西人,博士生,主要从事结构抗震研究(E-mail:495680791@qq.com);董立国(1990-),男,山西人,博士生,主要从事结构抗震研究(E-mail:dlg_15@163.com).
  • 基金资助:
    国家科技支撑计划项目(2013BAJ08B03);国家自然科学基金项目(51678475);陕西省重点研发计划项目(2017ZDXM-SF-093)

RESEARCH ON THE MODELLING METHOD OF REINFORCED CONCRETE COLUMN SUBJECTED TO FREEZE-THAW DAMAGE

ZHANG Yi-xin, ZHENG Shan-suo, PEI Pei, LI Lei, QIN Qing, DONG Li-guo   

  1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
  • Received:2017-11-01 Revised:2018-02-01 Online:2019-02-22 Published:2019-02-22

摘要: 为研究冻融后钢筋混凝土柱在地震作用下的响应,根据冻融损伤在构件截面分布的不均匀性,基于纤维截面分析方法,提出可考虑该分布的混凝土强度退化模型,以及等效冻融循环次数的计算方法。根据8榀考虑冻融影响的钢筋混凝土柱拟静力加载试验数据,对该文提出的模型进行了验证,同时与既有考虑冻融的混凝土模型进行了对比分析。结果表明:与未考虑冻融损伤分布的既有模型相比,该文模型的计算承载力较小,与试验数据吻合更好,即能够更准确地模拟不同程度冻融损伤后钢筋混凝土柱的地震反应。

关键词: 冻融循环, 钢筋混凝土柱, 纤维截面, 混凝土模型, 等效冻融循环次数

Abstract: Recognizing that the freeze-thaw damage is unevenly distributed on the component section, this paper proposed a concrete model that could take the uneven strength degradation due to freeze-thaw cycles into consideration, and a calculation method for equivalent numbers of freeze-thaw cycles was put forward. The model was validated using the data of pseudo static test on the reinforced concrete columns with different freeze-thaw damages. An existing concrete model concerning freeze-thaw cycles was also referred to make a comparison. The results show that the bearing capacity calculated by the proposed model is relatively conservative, and matches the test data better than the existing model which doesn’t consider the distribution of freeze-thaw damage, indicating that the proposed model could be used for modelling the seismic behavior of reinforced concrete columns with different freeze-thaw damage.

Key words: freeze-thaw cycles, reinforced concrete column, fiber section, concrete model, equivalent numbers of freeze-thaw cycles

中图分类号: 

  • TU375.3
[1] Hanjari K Z, Utgenannt P, Lundgren K. Experimental study of the material and bond properties of frost-damaged concrete[J]. Cement & Concrete Research, 2011, 41(3):244-254.
[2] Petersen L. Influence of material deterioration processes on mechanical behavior of reinforced concrete structures[D]. Hannover:University of Hannover, 2004.
[3] Petersen L, Lohaus L, Polak M A. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements[J]. ACI Materials Journal, 2007, 104(4):369-378.
[4] Molero M, Aparicio S, Al-Assadi G, et al. Evaluation of freeze-thaw damage in concrete by ultrasonic imaging[J]. Ndt & E International, 2012, 52(4):86-94.
[5] 商怀帅. 引气混凝土冻融循环后多轴强度的试验研究[D]. 大连:大连理工大学, 2006. Shang Huaishuai. Experimental study on of air-entrained concrete under multiaxial loads after freeze-thaw cycles[D]. Dalian:Dalian University of Technology, 2006. (in Chinese)
[6] 段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D]. 北京:清华大学, 2009. Duan An. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process[D]. Beijing:Tsinghua University, 2009. (in Chinese)
[7] Hassanzadeh M, Fagerlund G. Residual strength of the frost-damaged reinforced concrete beams[C]//Ⅲ European Conference on Computational Mechanics, Springer Netherlands, 2006:366-366.
[8] 曹大富, 葛文杰, 郭容邑, 等. 冻融循环作用后钢筋混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(6):137-144. Cao Dafu, Ge Wenjie, Guo Rongyi, et al. Experimental study on flexural behaviors of RC beams after freeze-thaw cycles[J]. Journal of Building Structures, 2014, 35(6):137-144. (in Chinese)
[9] 郑山锁, 甘传磊, 秦卿, 等. 冻融循环后一字形短肢剪力墙抗震性能试验研究[J]. 工程力学, 2016, 33(12):94-103. Zheng Shansuo, Gan Chuanlei, Qin Qing, et al. Experimental study on the seismic behaviors of short-pier shear walls subjected to freeze-thaw cycles[J]. Engineering Mechanics, 2016, 33(12):94-103. (in Chinese)
[10] Hanjari K Z, Kettil P, Lundgren K. Modelling the structural behaviour of frost-damaged reinforced concrete structures[J]. Structure & Infrastructure Engineering, 2013, 9(5):416-431.
[11] 刘西拉, 唐光普. 现场环境下混凝土冻融耐久性预测方法研究[J]. 岩石力学与工程学报, 2007, 26(12):2412-2419. Liu Xila, Tang Guangpu. Research on prediction method of concrete freeze thaw durability under field environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12):2412-2419. (in Chinese)
[12] Berto L, Saetta A, Talledo D. Constitutive model of concrete damaged by freeze-thaw action for evaluation of structural performance of RC elements[J]. Construction and Building Materials, 2015, 98:559-569.
[13] GBT 50082-2009, 普通混凝土长期性能和耐久性能试验方法标准[S]. 北京:中国建筑工业出版社, 2009. GBT 50082-2009, Standard for test methods of long-term performance and durability of ordinary concrete[S]. Beijing:China Building Industry Press, 2009. (in Chinese)
[14] Watson S, Park R. Simulated seismic load tests on reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120(6):1825-1849.
[15] Mahin S A, Bertero V V. Problems in establishing and predicting ductility in aseismic design[C]//Proceedings of the International Symposium on Earthquake Structural Engineering, St. Louis, USA, 1976:613-628.
[16] Paulay T, Priestly M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York, NY, US:John Wiley & Sons, Inc. 1992:140-156.
[17] Yassin M H M. Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads[M]. Berkeley:University of California, 1994.
[18] Roy H E H, Sozen M A. Ductility of concrete[C]//Proceedings of the Joint ACI-ASCE International Symposium on Flexural Mechanics of Reinforced Concrete, Miami, FL, 1964(12):213-235.
[19] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[20] Mckenna F, Fenves G L, Scott M H, et al. Open system for earthquake engineering simulation[D]. Berkeley, CA:Pacific Earthquake Engineering Research Center, University of California, 2000.
[21] Fagerlund G, Janz M, Johannesson B. Effect of frost damage on the bond between reinforcement and report[R]. Report, Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 1994.
[22] Suzuki T, Ohtsu M, Shigeishi M. Relative damage evaluation of concrete in a road bridge by AE rate-process analysis[J]. Materials and Structures, 2007, 40(2):221-227.
[23] 孙丛涛, 牛荻涛, 元成方, 等. 混凝土动弹性模量与超声声速及抗压强度的关系研究[J]. 混凝土, 2010, 246(4):14-16. Sun Congtao, Niu Ditao, Yuan Chengfang, et al. Study on relation between dynamic modulus of elasticity and velocity of ultrasonic sound and compressive strength for concrete[J]. Concrete, 2010, 246(4):14-16. (in Chinese)
[24] CP110, Code of practice for the structural use of concrete[S]. London, England:British Standards Institution, 1972.
[25] Hasan M, Okuyama H, Sato Y, et al. Stress-strain model of concrete damaged by freezing and thawing cycles[J]. Journal of Advanced Concrete Technology, 2004, 2(1):89-99.
[26] 郑山锁, 李强强, 秦卿, 等.考虑冻融损伤的低矮RC剪力墙恢复力模型研究[J]. 建筑结构学报已见刊, 2018, 39(3):111-119. Zheng Shansuo, Li Qiangqiang, Qin Qing, et al. Restoring force model of the freeze-thaw damaged squat reinforced concrete shear walls[J]. Journal of Building Structures, 2018, 39(3):111-119. (in Chinese)
[27] 过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社, 2013:214-233. Guo Zhenhai. Principles of reinforced concrete[M]. Beijing:Qinghua University Press, 2013:214-233. (in Chinese) (上接第65页)
[28] Spacone E, Filippou F C, Taucer F F. Fiber beam-column model for nonlinear analysis of R/C frames[J]. Earthquake Engineering & Structural Dynamics, 1996, 25(7):711-725.
[29] Polak M A. Nonlinear analysis of reinforced-concrete shells[J]. Journal of Structural Engineering, 1993, 119(12):3439-3462.
[30] 杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件[J]. 力学学报, 2006, 38(1):49-56. Du Xiuli, Zhao Mi, Wang Jinting. A stress artificial boundary in FEA for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):49-56. (in Chinese)
[31] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock[J]. Journal of Soil Mechanics and Foundations Division, 1968, 94(3):637-660.
[32] 钱向东, 任青文, 赵引. 一种高效的等参有限元逆变换算法[J]. 计算力学学报, 1998, 15(4):437-441. Qian Xiangdong, Ren Qingwen, Zhao Yin. An efficient inverse transformation method of isoparametric finite element method[J]. Chinese Journal of Computational Mechanics, 1998, 15(4):437-441. (in Chinese)
[33] 王进廷, 杜修力. 有阻尼体系动力分析的一种显式差分法[J]. 工程力学, 2002, 19(3):109-112. Wang Jinting, Du Xiuli. An explicit difference method for dynamic analysis of a structure system with damping[J]. Engineering Mechanics, 2002, 19(3):109-112. (in Chinese)
[34] 何昌荣, 杨桂芳. 邓肯-张模型参数变化对计算结果的影响[J]. 岩土工程学报, 2002, 24(2):170-174. He Changrong, Yang Guifang. Effects of parameters of Duncan-Chang model on calculated results[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2):170-174. (in Chinese)
[35] 蒋录珍, 陈隽, 李杰. 1995年阪神地震中大开车站破坏机理分析[J]. 世界地震工程, 2015, 31(3):236-242. Jiang Luzhen, Chen Juan, Li Jie. Damage mechanism analysis of Daikai subway station caused by Kobe earthquake in 1995[J]. World Earthquake Engineering, 2015, 31(3):236-242. (in Chinese)
[36] 杜修力. 工程波动理论与方法[M]. 北京:科学出版社, 2009:370-374. Du Xiuli. Theories and methods of wave motion for engineering[M]. Beijing:Science Press, 2009:370-374. (in Chinese)
[1] 罗大明, 牛荻涛, 苏丽. 荷载与环境共同作用下混凝土耐久性研究进展[J]. 工程力学, 2019, 36(1): 1-14,43.
[2] 邓明科, 张阳玺, 胡红波. 高延性混凝土加固钢筋混凝土柱抗剪承载力计算[J]. 工程力学, 2018, 35(3): 159-166.
[3] 刘子珅, 杨红, 张吉庆. 基于横向挠度的钢筋屈曲状态判断方法研究[J]. 工程力学, 2018, 35(2): 144-152.
[4] 李义柱, 曹双寅, 许鹏杰, 倪向勇. 600MPa级钢筋混凝土柱抗震性能试验研究[J]. 工程力学, 2018, 35(11): 181-189.
[5] 曹芙波, 唐磊杰, 丁兵兵, 王晨霞. 冻融损伤后钢筋与再生混凝土黏结滑移性能试验研究[J]. 工程力学, 2017, 34(增刊): 244-251.
[6] 赵燕茹, 王磊, 韩霄峰, 时金娜. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9): 92-101.
[7] 余波, 陈冰, 吴然立. 剪切型钢筋混凝土柱抗剪承载力计算的概率模型[J]. 工程力学, 2017, 34(7): 136-145.
[8] 闻磊, 李夕兵, 唐海燕, 翁磊. 变温度区间冻融作用下岩石物理力学性质研究及工程应用[J]. 工程力学, 2017, 34(5): 247-256.
[9] 李冬, 金浏, 杜修力. 轴压加载下高强钢筋混凝土柱尺寸效应试验研究[J]. 工程力学, 2017, 34(4): 49-56,71.
[10] 余波, 李长晋, 吴然立. 钢筋混凝土柱的非对称恢复力模型与参数识别[J]. 工程力学, 2017, 34(2): 153-161.
[11] 苏俊省, 王君杰, 宋彦臣, 董正方, 高昊. 钢筋混凝土柱纵筋屈曲长度简化计算模型[J]. 工程力学, 2017, 34(2): 162-170.
[12] 李冬, 金浏, 杜修力, 卢爱贞. 钢筋混凝土柱偏心受压力学性能的细观数值研究[J]. 工程力学, 2016, 33(7): 65-72.
[13] 陈旭, 周东华, 廖文远. 钢筋混凝土柱二阶弹塑性计算的图解法[J]. 工程力学, 2016, 33(7): 151-158.
[14] 朱翔, 陆新征, 杜永峰, 叶列平. 外包钢管加固RC柱抗冲击试验研究[J]. 工程力学, 2016, 33(6): 23-33.
[15] 陈宇, 李忠献, 李宁. 钢筋混凝土柱地震破坏分析的多尺度建模方法[J]. 工程力学, 2016, 33(6): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日